no code implementations • LREC 2020 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This paper introduces a corpus of Turkish offensive language.
no code implementations • LREC 2020 • Eva Huber, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
And third, we test the original system on a different dataset and a different language.
no code implementations • WS 2019 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This paper describes two related systems for cross-lingual morphological inflection for SIGMORPHON 2019 Shared Task participation.
no code implementations • WS 2019 • Nianheng Wu, Eric DeMattos, Kwok Him So, Pin-zhen Chen, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This paper describes the work done by team tearsofjoy participating in the VarDial 2019 Evaluation Campaign.
no code implementations • WS 2019 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Jeremy Barnes
This paper describes T{\"u}bingen-Oslo team{'}s participation in the cross-lingual morphological analysis task in the VarDial 2019 evaluation campaign.
no code implementations • WS 2018 • Aleks Berdicevskis, rs, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Katharina Ehret, Kilu von Prince, Daniel Ross, Bill Thompson, Chunxiao Yan, Vera Demberg, Gary Lupyan, Taraka Rama, Christian Bentz
We evaluate corpus-based measures of linguistic complexity obtained using Universal Dependencies (UD) treebanks.
no code implementations • WS 2018 • Pavel Sofroniev, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This study explores a number of data-driven vector representations of the IPA-encoded sound segments for the purpose of sound sequence alignment.
no code implementations • WS 2018 • Inna Pirina, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This paper presents a set of classification experiments for identifying depression in posts gathered from social media platforms.
no code implementations • WS 2018 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Taraka Rama
This paper describes our systems in social media mining for health applications (SMM4H) shared task.
no code implementations • COLING 2018 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Taraka Rama, Verena Blaschke
This paper describes our systems for the VarDial 2018 evaluation campaign.
no code implementations • SEMEVAL 2018 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Taraka Rama
This paper describes our participation in the SemEval-2018 task Multilingual Emoji Prediction.
no code implementations • WS 2017 • Taraka Rama, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
In the speech track, an LDA classifier based only on i-vectors performed better than a combination system using text features from speech transcriptions and i-vectors.
Ranked #1 on Native Language Identification on italki NLI
no code implementations • CONLL 2017 • Daniel Zeman, Martin Popel, Milan Straka, Jan Haji{\v{c}}, Joakim Nivre, Filip Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinkov{\'a}, Jan Haji{\v{c}} jr., Jaroslava Hlav{\'a}{\v{c}}ov{\'a}, V{\'a}clava Kettnerov{\'a}, Zde{\v{n}}ka Ure{\v{s}}ov{\'a}, Jenna Kanerva, Stina Ojala, Anna Missil{\"a}, Christopher D. Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Droganova, H{\'e}ctor Mart{\'\i}nez Alonso, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, M, Michael l, Jesse Kirchner, Hector Fern Alcalde, ez, Jana Strnadov{\'a}, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendon{\c{c}}a, L, Tatiana o, Rattima Nitisaroj, Josie Li
The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets.
no code implementations • WS 2017 • Taraka Rama, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Pavel Sofroniev
This paper presents a computational analysis of Gondi dialects spoken in central India.
no code implementations • WS 2017 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Taraka Rama
This paper describes our systems and results on VarDial 2017 shared tasks.
no code implementations • COLING 2016 • Umut Sulubacak, Memduh Gokirmak, Francis Tyers, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Joakim Nivre, G{\"u}l{\c{s}}en Eryi{\u{g}}it
The Universal Dependencies (UD) project was conceived after the substantial recent interest in unifying annotation schemes across languages.
no code implementations • WS 2016 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Taraka Rama
This paper describes the systems we experimented with for participating in the discriminating between similar languages (DSL) shared task 2016.
no code implementations • WS 2016 • Taraka Rama, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
Computational approaches for dialectometry employed Levenshtein distance to compute an aggregate similarity between two dialects belonging to a single language group.
no code implementations • LREC 2014 • {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin
This paper introduces a set of freely available, open-source tools for Turkish that are built around TRmorph, a morphological analyzer introduced earlier in Coltekin (2010).