no code implementations • 24 Nov 2022 • Mateusz Olko, Michał Zając, Aleksandra Nowak, Nino Scherrer, Yashas Annadani, Stefan Bauer, Łukasz Kuciński, Piotr Miłoś
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT, that 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
no code implementations • 28 Sep 2022 • Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, Piotr Miłoś
The ability of continual learning systems to transfer knowledge from previously seen tasks in order to maximize performance on new tasks is a significant challenge for the field, limiting the applicability of continual learning solutions to realistic scenarios.
1 code implementation • 1 Jun 2022 • Michał Zawalski, Michał Tyrolski, Konrad Czechowski, Damian Stachura, Piotr Piękos, Tomasz Odrzygóźdź, Yuhuai Wu, Łukasz Kuciński, Piotr Miłoś
Complex reasoning problems contain states that vary in the computational cost required to determine a good action plan.
1 code implementation • 30 Nov 2021 • Piotr Januszewski, Mateusz Olko, Michał Królikowski, Jakub Świątkowski, Marcin Andrychowicz, Łukasz Kuciński, Piotr Miłoś
The growth of deep reinforcement learning (RL) has brought multiple exciting tools and methods to the field.
no code implementations • NeurIPS 2021 • Łukasz Kuciński, Tomasz Korbak, Paweł Kołodziej, Piotr Miłoś
Communication is compositional if complex signals can be represented as a combination of simpler subparts.
1 code implementation • NeurIPS 2021 • Konrad Czechowski, Tomasz Odrzygóźdź, Marek Zbysiński, Michał Zawalski, Krzysztof Olejnik, Yuhuai Wu, Łukasz Kuciński, Piotr Miłoś
In this paper, we implement kSubS using a transformer-based subgoal module coupled with the classical best-first search framework.
1 code implementation • NeurIPS 2021 • Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, Piotr Miłoś
Continual learning (CL) -- the ability to continuously learn, building on previously acquired knowledge -- is a natural requirement for long-lived autonomous reinforcement learning (RL) agents.
1 code implementation • NeurIPS Workshop LMCA 2020 • Piotr Kozakowski, Piotr Januszewski, Konrad Czechowski, Łukasz Kuciński, Piotr Miłoś
Planning in large state spaces inevitably needs to balance depth and breadth of the search.
1 code implementation • NeurIPS Workshop LMCA 2020 • Konrad Czechowski, Tomasz Odrzygóźdź, Michał Izworski, Marek Zbysiński, Łukasz Kuciński, Piotr Miłoś
We propose $\textit{trust-but-verify}$ (TBV) mechanism, a new method which uses model uncertainty estimates to guide exploration.
Model-based Reinforcement Learning
reinforcement-learning
+1
no code implementations • ICML Workshop LaReL 2020 • Łukasz Kuciński, Paweł Kołodziej, Piotr Miłoś
In this paper, we investigate how communication through a noisy channel can lead to the emergence of compositional language.
1 code implementation • 19 Dec 2019 • Piotr Miłoś, Łukasz Kuciński, Konrad Czechowski, Piotr Kozakowski, Maciek Klimek
The former manifests itself through the use of value function, while the latter is powered by a tree search planner.
1 code implementation • 4 Oct 2019 • Tomasz Korbak, Julian Zubek, Łukasz Kuciński, Piotr Miłoś, Joanna Rączaszek-Leonardi
This paper explores a novel approach to achieving emergent compositional communication in multi-agent systems.
1 code implementation • 25 Sep 2019 • Piotr Miłoś, Łukasz Kuciński, Konrad Czechowski, Piotr Kozakowski, Maciej Klimek
Notably, our method performs well in environments with sparse rewards where standard $TD(1)$ backups fail.