Search Results for author: A.

Found 5 papers, 4 papers with code

Cosmic Background Removal with Deep Neural Networks in SBND

1 code implementation2 Dec 2020 SBND Collaboration, R. Acciarri, C. Adams, C. Andreopoulos, J. Asaadi, M. Babicz, C. Backhouse, W. Badgett, L. Bagby, D. Barker, V. Basque, Q. Bazetto, M. Betancourt, A. Bhanderi, A. Bhat, C. Bonifazi, D. Brailsford, G. Brandt, T. Brooks, F. Carneiro, Y. Chen, H. Chen, G. Chisnall, I. Crespo-Anadón, E. Cristaldo, C. Cuesta, I., L. de Icaza Astiz, A. De Roeck, G. de Sá Pereira, M. Del Tutto, V. Di Benedetto, A. Ereditato, J. Evans, C. Ezeribe, S. Fitzpatrick, T. Fleming, W. Foreman, D. Franco, I. Furic, P. Furmanski, S. Gao, D. Garcia-Gamez, H. Frandini, G. Ge, I. Gil-Botella, S. Gollapinni, O. Goodwin, P. Green, C. Griffith, R. Guenette, P. Guzowski, T. Ham, J. Henzerling, A. Holin, B. Howard, R., S. Jones, D. Kalra, G. Karagiorgi, L. Kashur, W. Ketchum, M., J. Kim, A. Kudryavtsev, J. Larkin, H. Lay, I. Lepetic, B., R. Littlejohn, W., C. Louis, A., A. Machado, M. Malek, D. Mardsen, C. Mariani, F. Marinho, A. Mastbaum, K. Mavrokoridis, N. McConkey, V. Meddage, P. Méndez, T. Mettler, K. Mistry, A. Mogan, J. Molina, M. Mooney, L. Mora, C., A. Moura, J. Mousseau, A. Navrer-Agasson, F., J. Nicolas-Arnaldos, A. Nowak, O. Palamara, V. Pandey, J. Pater, L. Paulucci, V., L. Pimentel, F. Psihas, G. Putnam, X. Qian, E. Raguzin, H. Ray, M. Reggiani-Guzzo, D. Rivera, M. Roda, M. Ross-Lonergan, G. Scanavini, A. Scarff, D., W. Schmitz, A. Schukraft, E. Segreto, M. Soares Nunes, M. Soderberg, S. Söldner-Rembold, J. Spitz, N., J., C. Spooner, M. Stancari, V. Stenico, A. Szelc, W. Tang, J. Tena Vidal, D. Torretta, M. Toups, C. Touramanis, M. Tripathi, S. Tufanli, E. Tyley, G., A. Valdiviesso, E. Worcester, M. Worcester, G. Yarbrough, J. Yu, B. Zamorano, J. Zennamo, A. Zglam

In liquid argon time projection chambers exposed to neutrino beams and running on or near surface levels, cosmic muons and other cosmic particles are incident on the detectors while a single neutrino-induced event is being recorded.

Semantic Segmentation Data Analysis, Statistics and Probability

Deep Generative Models that Solve PDEs: Distributed Computing for Training Large Data-Free Models

no code implementations12 Nov 2020 Botelho, Joshi, A., Khara, Sarkar, S., Hegde, C., Rao, V., Adavani, S.S., & Ganapathysubramanian, B.

Here we report on a software framework for data parallel distributed deep learning that resolves the twin challenges of training these large SciML models training in reasonable time as well as distributing the storage requirements.

Distributed Computing

Towards Exact Molecular Dynamics Simulations with Machine-Learned Force Fields

1 code implementation Nature Communications 2018 Chmiela, S., Sauceda, H. E., Müller, K.-R., Tkatchenko, A.

We present MD simulations, for flexible molecules with up to a few dozen atoms and provide insights into the dynamical behavior of these molecules.

Machine Learning of Accurate Energy-conserving Molecular Force Fields

1 code implementation Science Advances 2017 Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., Müller, K.-R.

Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories.

BIG-bench Machine Learning

Cannot find the paper you are looking for? You can Submit a new open access paper.