no code implementations • 4 Feb 2021 • X. Zheng, A. Deur, H. Kang, S. E. Kuhn, M. Ripani, J. Zhang, K. P. Adhikari, S. Adhikari, M. J. Amaryan, H. Atac, H. Avakian, L. Barion, M. Battaglieri, I. Bedlinskiy, F. Benmokhtar, A. Bianconi, A. S. Biselli, S. Boiarinov, M. Bondi, F. Bossu, P. Bosted, W. J. Briscoe, J. Brock, W. K. Brooks, D. Bulumulla, V. D. Burkert, C. Carlin, D. S. Carman, J. C. Carvajal, A. Celentano, P. Chatagnon, T. Chetry, J. -P. Chen, S. Choi, G. Ciullo, L. Clark, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, S. Diehl, C. Djalali, V. A. Drozdov, R. Dupre, M. Ehrhart, A. El Alaoui, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, T. A. Forest, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. -X. Girod, D. I. Glazier, R. W. Gothe, K. A. Griffioen, M. Guidal, N. Guler, L. Guo, K. Hafidi, H. Hakobyan, M. Hattawy, T. B. Hayward, D. Heddle, K. Hicks, A. Hobart, T. Holmstrom, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. S. Jo, K. Joo, S. Joosten, C. D. Keith, D. Keller, A. Khanal, M. Khandaker, C. W. Kim, W. Kim, F. J. Klein, A. Kripko, V. Kubarovsky, L. Lanza, M. Leali, P. Lenisa, K. Livingston, E. Long, I. J. D. MacGregor, N. Markov, L. Marsicano, V. Mascagna, B. McKinnon, D. G. Meekins, T. Mineeva, M. Mirazita, V. Mokeev, C. Mullen, P. Nadel-Turonski, K. Neupane, S. Niccolai, M. Osipenko, A. I. Ostrovidov, M. Paolone, L. Pappalardo, K. Park, E. Pasyuk, W. Phelps, S. K. Phillips, O. Pogorelko, J. Poudel, Y. Prok, B. A. Raue, J. Ritman, A. Rizzo, G. Rosner, P. Rossi, J. Rowley, F. Sabatie, C. Salgado, A. Schmidt, R. A. Schumacher, M. L. Seely, Y. G. Sharabian, U. Shrestha, S. Sirca, K. Slifer, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sulkosky, N. Tyler, M. Ungaro, L. Venturelli, H. Voskanyan, E. Voutier, D. P. Watts, X. Wei, L. B. Weinstein, M. H. Wood, B. Yale, N. Zachariou, Z. W. Zhao
Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter.
Nuclear Experiment High Energy Physics - Experiment
no code implementations • 2 Nov 2020 • D. Bhetuwal, J. Matter, H. Szumila-Vance, M. L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi, R. Ambrose, D. Androic, W. Armstrong, A. Asaturyan, K. Assumin-Gyimah, C. Ayerbe Gayoso, A. Bandari, S. Basnet, V. Berdnikov, H. Bhatt, D. Biswas, W. U. Boeglin, P. Bosted, E. Brash, M. H. S. Bukhari, H. Chen, J. P. Chen, M. Chen, E. M. Christy, S. Covrig, K. Craycraft, S. Danagoulian, D. Day, M. Diefenthaler, M. Dlamini, J. Dunne, B. Duran, R. Evans, H. Fenker, N. Fomin, E. Fuchey, D. Gaskell, T. N. Gautam, F. A. Gonzalez, J. O. Hansen, F. Hauenstein, A. V. Hernandez, T. Horn, G. M. Huber, M. K. Jones, S. Joosten, A. Karki, C. Keppel, A. Khanal, P. M. King, E. Kinney, H. S. Ko, M. Kohl, N. Lashley-Colthirst, S. Li, W. B. Li, A. H. Liyanage, D. Mack, S. Malace, P. Markowitz, D. Meekins, R. Michaels, A. Mkrtchyan, H. Mkrtchyan, S. J. Nazeer, S. Nanda, G. Niculescu, I. Niculescu, D. Nguyen, Nuruzzaman, B. Pandey, S. Park, E. Pooser, A. Puckett, M. Rehfuss, J. Reinhold, N. Santiesteban, B. Sawatzky, G. R. Smith, A. Sun, V. Tadevosyan, R. Trotta, S. A. Wood, C. Yero, J. Zhang
Quasielastic $^{12}$C$(e, e'p)$ scattering was measured at space-like 4-momentum transfer squared $Q^2$~=~8, 9. 4, 11. 4, and 14. 2 (GeV/c)$^2$, the highest ever achieved to date.
Nuclear Experiment High Energy Physics - Experiment Nuclear Theory