no code implementations • 11 Aug 2023 • Karim Lekadir, Aasa Feragen, Abdul Joseph Fofanah, Alejandro F Frangi, Alena Buyx, Anais Emelie, Andrea Lara, Antonio R Porras, An-Wen Chan, Arcadi Navarro, Ben Glocker, Benard O Botwe, Bishesh Khanal, Brigit Beger, Carol C Wu, Celia Cintas, Curtis P Langlotz, Daniel Rueckert, Deogratias Mzurikwao, Dimitrios I Fotiadis, Doszhan Zhussupov, Enzo Ferrante, Erik Meijering, Eva Weicken, Fabio A González, Folkert W Asselbergs, Fred Prior, Gabriel P Krestin, Gary Collins, Geletaw S Tegenaw, Georgios Kaissis, Gianluca Misuraca, Gianna Tsakou, Girish Dwivedi, Haridimos Kondylakis, Harsha Jayakody, Henry C Woodruf, Hugo JWL Aerts, Ian Walsh, Ioanna Chouvarda, Irène Buvat, Islem Rekik, James Duncan, Jayashree Kalpathy-Cramer, Jihad Zahir, Jinah Park, John Mongan, Judy W Gichoya, Julia A Schnabel, Kaisar Kushibar, Katrine Riklund, Kensaku MORI, Kostas Marias, Lameck M Amugongo, Lauren A Fromont, Lena Maier-Hein, Leonor Cerdá Alberich, Leticia Rittner, Lighton Phiri, Linda Marrakchi-Kacem, Lluís Donoso-Bach, Luis Martí-Bonmatí, M Jorge Cardoso, Maciej Bobowicz, Mahsa Shabani, Manolis Tsiknakis, Maria A Zuluaga, Maria Bielikova, Marie-Christine Fritzsche, Marius George Linguraru, Markus Wenzel, Marleen de Bruijne, Martin G Tolsgaard, Marzyeh Ghassemi, Md Ashrafuzzaman, Melanie Goisauf, Mohammad Yaqub, Mohammed Ammar, Mónica Cano Abadía, Mukhtar M E Mahmoud, Mustafa Elattar, Nicola Rieke, Nikolaos Papanikolaou, Noussair Lazrak, Oliver Díaz, Olivier Salvado, Oriol Pujol, Ousmane Sall, Pamela Guevara, Peter Gordebeke, Philippe Lambin, Pieta Brown, Purang Abolmaesumi, Qi Dou, Qinghua Lu, Richard Osuala, Rose Nakasi, S Kevin Zhou, Sandy Napel, Sara Colantonio, Shadi Albarqouni, Smriti Joshi, Stacy Carter, Stefan Klein, Steffen E Petersen, Susanna Aussó, Suyash Awate, Tammy Riklin Raviv, Tessa Cook, Tinashe E M Mutsvangwa, Wendy A Rogers, Wiro J Niessen, Xènia Puig-Bosch, Yi Zeng, Yunusa G Mohammed, Yves Saint James Aquino, Zohaib Salahuddin, Martijn P A Starmans
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
no code implementations • 9 Aug 2023 • Nina Weng, Siavash Bigdeli, Eike Petersen, Aasa Feragen
In this work, we investigate the causes of gender bias in machine learning-based chest X-ray diagnosis.
no code implementations • 2 May 2023 • Eike Petersen, Enzo Ferrante, Melanie Ganz, Aasa Feragen
Medical imaging models have been shown to encode information about patient demographics such as age, race, and sex in their latent representation, raising concerns about their potential for discrimination.
no code implementations • 11 Apr 2023 • Chun Kit Wong, Manxi Lin, Alberto Raheli, Zahra Bashir, Morten Bo Søndergaard Svendsen, Martin Grønnebæk Tolsgaard, Aasa Feragen, Anders Nymark Christensen
Examination of the umbilical artery with Doppler ultrasonography is performed to investigate blood supply to the fetus through the umbilical cord, which is vital for the monitoring of fetal health.
no code implementations • 28 Mar 2023 • Kilian Zepf, Eike Petersen, Jes Frellsen, Aasa Feragen
Segmentation uncertainty models predict a distribution over plausible segmentations for a given input, which they learn from the annotator variation in the training set.
no code implementations • 24 Mar 2023 • Kamil Mikolaj, Manxi Lin, Zahra Bashir, Morten Bo Søndergaard Svendsen, Martin Tolsgaard, Anders Nymark, Aasa Feragen
In order to utilize the vast amounts of data available in these databases, we develop and validate a series of methods for minimizing the confounding effects of embedded text and calipers on deep learning algorithms designed for ultrasound, using standard plane classification as a test case.
no code implementations • 23 Mar 2023 • Kilian Zepf, Selma Wanna, Marco Miani, Juston Moore, Jes Frellsen, Søren Hauberg, Aasa Feragen, Frederik Warburg
To ensure robustness to such incorrect segmentations, we propose Laplacian Segmentation Networks (LSN) that jointly model epistemic (model) and aleatoric (data) uncertainty in image segmentation.
no code implementations • 17 Feb 2023 • Eike Petersen, Melanie Ganz, Sune Hannibal Holm, Aasa Feragen
Further, we address how to assess the fairness of risk score models quantitatively, including a discussion of metric choices and meaningful statistical comparisons between groups.
no code implementations • 19 Nov 2022 • Manxi Lin, Aasa Feragen, Zahra Bashir, Martin Grønnebæk Tolsgaard, Anders Nymark Christensen
Concept bottleneck models (CBMs) include a bottleneck of human-interpretable concepts providing explainability and intervention during inference by correcting the predicted, intermediate concepts.
no code implementations • 23 May 2022 • Manxi Lin, Zahra Bashir, Martin Grønnebæk Tolsgaard, Anders Nymark Christensen, Aasa Feragen
We conduct experiments on a challenging multi-class ultrasound scan segmentation dataset as well as a well-known retinal imaging dataset.
1 code implementation • 4 Apr 2022 • Eike Petersen, Aasa Feragen, Maria Luise da Costa Zemsch, Anders Henriksen, Oskar Eiler Wiese Christensen, Melanie Ganz
Instead, while logistic regression is fully robust to dataset composition, we find that CNN performance is generally improved for both male and female subjects when including more female subjects in the training dataset.
1 code implementation • 29 Nov 2021 • Manxi Lin, Aasa Feragen
Standard spatial convolutions assume input data with a regular neighborhood structure.
1 code implementation • NeurIPS 2021 • Steffen Czolbe, Aasa Feragen, Oswin Krause
As a first step towards solving such alignment problems, we propose an unsupervised algorithm for the detection of changes in image topology.
no code implementations • 6 Jun 2021 • Guan Wang, Francois Bernard Lauze, Aasa Feragen
For such tasks, the main requirement for intermediate representations of the data is to maintain the structure needed for output, i. e., keeping classes separated or maintaining the order indicated by the regressor.
no code implementations • 20 May 2021 • Kasra Arnavaz, Oswin Krause, Kilian Zepf, Jelena M. Krivokapic, Silja Heilmann, Jakob Andreas Bærentzen, Pia Nyeng, Aasa Feragen
b) We provide a full deep-learning methodology for this difficult noisy task on time-series image data.
1 code implementation • 20 Apr 2021 • Steffen Czolbe, Oswin Krause, Aasa Feragen
We propose a semantic similarity metric for image registration.
1 code implementation • 30 Mar 2021 • Steffen Czolbe, Kasra Arnavaz, Oswin Krause, Aasa Feragen
Probabilistic image segmentation encodes varying prediction confidence and inherent ambiguity in the segmentation problem.
1 code implementation • 11 Nov 2020 • Steffen Czolbe, Oswin Krause, Aasa Feragen
We propose a semantic similarity metric for image registration.
no code implementations • 21 May 2019 • M. Jorge Cardoso, Aasa Feragen, Ben Glocker, Ender Konukoglu, Ipek Oguz, Gozde Unal, Tom Vercauteren
This compendium gathers all the accepted extended abstracts from the Second International Conference on Medical Imaging with Deep Learning (MIDL 2019), held in London, UK, 8-10 July 2019.
no code implementations • 24 Feb 2019 • Anton Mallasto, Tom Dela Haije, Aasa Feragen
The method uses the Kullback-Leibler divergence, corresponding infinitesimally to the Fisher-Rao metric, which is pulled back to the parameter space of a family of probability distributions.
1 code implementation • 10 Feb 2019 • Anton Mallasto, Jes Frellsen, Wouter Boomsma, Aasa Feragen
We contribute to the WGAN literature by introducing the family of $(q, p)$-Wasserstein GANs, which allow the use of more general $p$-Wasserstein metrics for $p\geq 1$ in the GAN learning procedure.
1 code implementation • 29 Jun 2018 • Rune Kok Nielsen, Andreas Nugaard Holm, Aasa Feragen
We study the effect of structural variation in graph data on the predictive performance of graph kernels.
no code implementations • CVPR 2018 • Anton Mallasto, Aasa Feragen
Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates.
no code implementations • 23 May 2018 • Anton Mallasto, Søren Hauberg, Aasa Feragen
Latent variable models (LVMs) learn probabilistic models of data manifolds lying in an \emph{ambient} Euclidean space.
no code implementations • NeurIPS 2017 • Anton Mallasto, Aasa Feragen
We prove uniqueness of the barycenter of a population of GPs, as well as convergence of the metric and the barycenter of their finite-dimensional counterparts.
no code implementations • CVPR 2015 • Aasa Feragen, Francois Lauze, Søren Hauberg
However, we show that for spaces with conditionally negative definite distances the geodesic Laplacian kernel can be generalized while retaining positive definiteness.
no code implementations • CVPR 2014 • Soren Hauberg, Aasa Feragen, Michael J. Black
We exploit that averages can be made robust to formulate the Robust Grassmann Average (RGA) as a form of robust PCA.
no code implementations • NeurIPS 2013 • Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten Borgwardt
While graphs with continuous node attributes arise in many applications, state-of-the-art graph kernels for comparing continuous-attributed graphs suffer from a high runtime complexity; for instance, the popular shortest path kernel scales as $\mathcal{O}(n^4)$, where $n$ is the number of nodes.
no code implementations • 29 Mar 2013 • Aasa Feragen, Jens Petersen, Dominik Grimm, Asger Dirksen, Jesper Holst Pedersen, Karsten Borgwardt, Marleen de Bruijne
Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree.