Search Results for author: Abhinav Garg

Found 8 papers, 0 papers with code

Distribution Shift in Airline Customer Behavior during COVID-19

no code implementations29 Nov 2021 Abhinav Garg, Naman Shukla, Lavanya Marla, Sriram Somanchi

Traditional AI approaches in customized (personalized) contextual pricing applications assume that the data distribution at the time of online pricing is similar to that observed during training.

A comparison of streaming models and data augmentation methods for robust speech recognition

no code implementations19 Nov 2021 Jiyeon Kim, Mehul Kumar, Dhananjaya Gowda, Abhinav Garg, Chanwoo Kim

However, we observe that training of MoChA models seems to be more sensitive to various factors such as the characteristics of training sets and the incorporation of additional augmentations techniques.

Data Augmentation Robust Speech Recognition +1

Semi-supervised transfer learning for language expansion of end-to-end speech recognition models to low-resource languages

no code implementations19 Nov 2021 Jiyeon Kim, Mehul Kumar, Dhananjaya Gowda, Abhinav Garg, Chanwoo Kim

To improve the accuracy of a low-resource Italian ASR, we leverage a well-trained English model, unlabeled text corpus, and unlabeled audio corpus using transfer learning, TTS augmentation, and SSL respectively.

Data Augmentation speech-recognition +2

Streaming end-to-end speech recognition with jointly trained neural feature enhancement

no code implementations4 May 2021 Chanwoo Kim, Abhinav Garg, Dhananjaya Gowda, Seongkyu Mun, Changwoo Han

In this paper, we present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers.

speech-recognition Speech Recognition

A review of on-device fully neural end-to-end automatic speech recognition algorithms

no code implementations14 Dec 2020 Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim, Ankur Kumar, Sungsoo Kim, Abhinav Garg, Changwoo Han

Conventional speech recognition systems comprise a large number of discrete components such as an acoustic model, a language model, a pronunciation model, a text-normalizer, an inverse-text normalizer, a decoder based on a Weighted Finite State Transducer (WFST), and so on.

Automatic Speech Recognition speech-recognition

Improved Multi-Stage Training of Online Attention-based Encoder-Decoder Models

no code implementations28 Dec 2019 Abhinav Garg, Dhananjaya Gowda, Ankur Kumar, Kwangyoun Kim, Mehul Kumar, Chanwoo Kim

In this paper, we propose a refined multi-stage multi-task training strategy to improve the performance of online attention-based encoder-decoder (AED) models.

Language Modelling Multi-Task Learning

end-to-end training of a large vocabulary end-to-end speech recognition system

no code implementations22 Dec 2019 Chanwoo Kim, Sungsoo Kim, Kwangyoun Kim, Mehul Kumar, Jiyeon Kim, Kyungmin Lee, Changwoo Han, Abhinav Garg, Eunhyang Kim, Minkyoo Shin, Shatrughan Singh, Larry Heck, Dhananjaya Gowda

Our end-to-end speech recognition system built using this training infrastructure showed a 2. 44 % WER on test-clean of the LibriSpeech test set after applying shallow fusion with a Transformer language model (LM).

Data Augmentation speech-recognition +1

Cannot find the paper you are looking for? You can Submit a new open access paper.