no code implementations • 3 Oct 2023 • Adam Izdebski, Ewelina Weglarz-Tomczak, Ewa Szczurek, Jakub M. Tomczak
De novo drug design requires simultaneously generating novel molecules outside of training data and predicting their target properties, making it a hard task for generative models.
1 code implementation • 14 Sep 2021 • Adam Izdebski, Patrick J. Thoral, Robbert C. A. Lalisang, Dean M. McHugh, Diederik Gommers, Olaf L. Cremer, Rob J. Bosman, Sander Rigter, Evert-Jan Wils, Tim Frenzel, Dave A. Dongelmans, Remko de Jong, Marco A. A. Peters, Marlijn J. A Kamps, Dharmanand Ramnarain, Ralph Nowitzky, Fleur G. C. A. Nooteboom, Wouter de Ruijter, Louise C. Urlings-Strop, Ellen G. M. Smit, D. Jannet Mehagnoul-Schipper, Tom Dormans, Cornelis P. C. de Jager, Stefaan H. A. Hendriks, Sefanja Achterberg, Evelien Oostdijk, Auke C. Reidinga, Barbara Festen-Spanjer, Gert B. Brunnekreef, Alexander D. Cornet, Walter van den Tempel, Age D. Boelens, Peter Koetsier, Judith Lens, Harald J. Faber, A. Karakus, Robert Entjes, Paul de Jong, Thijs C. D. Rettig, Sesmu Arbous, Lucas M. Fleuren, Tariq A. Dam, Michele Tonutti, Daan P. de Bruin, Paul W. G. Elbers, Giovanni Cinà
Despite the recent progress in the field of causal inference, to date there is no agreed upon methodology to glean treatment effect estimation from observational data.
no code implementations • 17 Sep 2020 • Adam Izdebski, Ronald de Wolf
Boosting is a general method to convert a weak learner (which generates hypotheses that are just slightly better than random) into a strong learner (which generates hypotheses that are much better than random).