no code implementations • 6 Dec 2021 • Michael Schaarschmidt, Dominik Grewe, Dimitrios Vytiniotis, Adam Paszke, Georg Stefan Schmid, Tamara Norman, James Molloy, Jonathan Godwin, Norman Alexander Rink, Vinod Nair, Dan Belov
The rapid rise in demand for training large neural network architectures has brought into focus the need for partitioning strategies, for example by using data, model, or pipeline parallelism.
no code implementations • 2 Dec 2021 • Norman A. Rink, Adam Paszke, Dimitrios Vytiniotis, Georg Stefan Schmid
In this paper we address the problem of redistributing multi-dimensional array data in SPMD computations, the most prevalent form of parallelism in deep learning.
no code implementations • 20 May 2021 • Roy Frostig, Matthew J. Johnson, Dougal Maclaurin, Adam Paszke, Alexey Radul
We decompose reverse-mode automatic differentiation into (forward-mode) linearization followed by transposition.
1 code implementation • 26 Feb 2021 • Adam Paszke, Brennan Saeta
Multidimensional arrays (NDArrays) are a central abstraction in modern scientific computing environments.
3 code implementations • 28 Jun 2020 • Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, Soumith Chintala
This paper presents the design, implementation, and evaluation of the PyTorch distributed data parallel module.
2 code implementations • NeurIPS 2019 • Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala
Deep learning frameworks have often focused on either usability or speed, but not both.
1 code implementation • NIPS 2017 2017 • Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, Adam Lerer
In this article, we describe an automatic differentiation module of PyTorch — a library designed to enable rapid research on machine learning models.
43 code implementations • 7 Jun 2016 • Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello
The ability to perform pixel-wise semantic segmentation in real-time is of paramount importance in mobile applications.
Ranked #9 on
Semantic Segmentation
on ScanNetV2
4 code implementations • 24 May 2016 • Alfredo Canziani, Adam Paszke, Eugenio Culurciello
Since the emergence of Deep Neural Networks (DNNs) as a prominent technique in the field of computer vision, the ImageNet classification challenge has played a major role in advancing the state-of-the-art.