no code implementations • 23 Aug 2024 • Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox, Rameswar Panda
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters.
1 code implementation • 18 Jul 2024 • Matt Stallone, Vaibhav Saxena, Leonid Karlinsky, Bridget McGinn, Tim Bula, Mayank Mishra, Adriana Meza Soria, Gaoyuan Zhang, Aditya Prasad, Yikang Shen, Saptha Surendran, Shanmukha Guttula, Hima Patel, Parameswaran Selvam, Xuan-Hong Dang, Yan Koyfman, Atin Sood, Rogerio Feris, Nirmit Desai, David D. Cox, Ruchir Puri, Rameswar Panda
This paper introduces long-context Granite code models that support effective context windows of up to 128K tokens.
no code implementations • 7 Jul 2024 • Talia Gershon, Seetharami Seelam, Brian Belgodere, Milton Bonilla, Lan Hoang, Danny Barnett, I-Hsin Chung, Apoorve Mohan, Ming-Hung Chen, Lixiang Luo, Robert Walkup, Constantinos Evangelinos, Shweta Salaria, Marc Dombrowa, Yoonho Park, Apo Kayi, Liran Schour, Alim Alim, Ali Sydney, Pavlos Maniotis, Laurent Schares, Bernard Metzler, Bengi Karacali-Akyamac, Sophia Wen, Tatsuhiro Chiba, Sunyanan Choochotkaew, Takeshi Yoshimura, Claudia Misale, Tonia Elengikal, Kevin O Connor, Zhuoran Liu, Richard Molina, Lars Schneidenbach, James Caden, Christopher Laibinis, Carlos Fonseca, Vasily Tarasov, Swaminathan Sundararaman, Frank Schmuck, Scott Guthridge, Jeremy Cohn, Marc Eshel, Paul Muench, Runyu Liu, William Pointer, Drew Wyskida, Bob Krull, Ray Rose, Brent Wolfe, William Cornejo, John Walter, Colm Malone, Clifford Perucci, Frank Franco, Nigel Hinds, Bob Calio, Pavel Druyan, Robert Kilduff, John Kienle, Connor McStay, Andrew Figueroa, Matthew Connolly, Edie Fost, Gina Roma, Jake Fonseca, Ido Levy, Michele Payne, Ryan Schenkel, Amir Malki, Lion Schneider, Aniruddha Narkhede, Shekeba Moshref, Alexandra Kisin, Olga Dodin, Bill Rippon, Henry Wrieth, John Ganci, Johnny Colino, Donna Habeger-Rose, Rakesh Pandey, Aditya Gidh, Dennis Patterson, Samsuddin Salmani, Rambilas Varma, Rumana Rumana, Shubham Sharma, Aditya Gaur, Mayank Mishra, Rameswar Panda, Aditya Prasad, Matt Stallone, Gaoyuan Zhang, Yikang Shen, David Cox, Ruchir Puri, Dakshi Agrawal, Drew Thorstensen, Joel Belog, Brent Tang, Saurabh Kumar Gupta, Amitabha Biswas, Anup Maheshwari, Eran Gampel, Jason Van Patten, Matthew Runion, Sai Kaki, Yigal Bogin, Brian Reitz, Steve Pritko, Shahan Najam, Surya Nambala, Radhika Chirra, Rick Welp, Frank DiMitri, Felipe Telles, Amilcar Arvelo, King Chu, Ed Seminaro, Andrew Schram, Felix Eickhoff, William Hanson, Eric Mckeever, Dinakaran Joseph, Piyush Chaudhary, Piyush Shivam, Puneet Chaudhary, Wesley Jones, Robert Guthrie, Chris Bostic, Rezaul Islam, Steve Duersch, Wayne Sawdon, John Lewars, Matthew Klos, Michael Spriggs, Bill McMillan, George Gao, Ashish Kamra, Gaurav Singh, Marc Curry, Tushar Katarki, Joe Talerico, Zenghui Shi, Sai Sindhur Malleni, Erwan Gallen
This infrastructure includes (1) Vela: an AI-optimized supercomputing capability directly integrated into the IBM Cloud, delivering scalable, dynamic, multi-tenant and geographically distributed infrastructure for large-scale model training and other AI workflow steps and (2) Blue Vela: a large-scale, purpose-built, on-premises hosting environment that is optimized to support our largest and most ambitious AI model training tasks.
2 code implementations • 7 May 2024 • Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White, Mark Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel, Yousaf Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapanipathi, Shweta Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos Fonseca, Amith Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, Rameswar Panda
Increasingly, code LLMs are being integrated into software development environments to improve the productivity of human programmers, and LLM-based agents are beginning to show promise for handling complex tasks autonomously.
no code implementations • 12 Feb 2023 • Lee Martie, Jessie Rosenberg, Veronique Demers, Gaoyuan Zhang, Onkar Bhardwaj, John Henning, Aditya Prasad, Matt Stallone, Ja Young Lee, Lucy Yip, Damilola Adesina, Elahe Paikari, Oscar Resendiz, Sarah Shaw, David Cox
Compositional AI systems, which combine multiple artificial intelligence components together with other application components to solve a larger problem, have no known pattern of development and are often approached in a bespoke and ad hoc style.
no code implementations • 4 Jul 2019 • Akshay Iyer, Yichi Zhang, Aditya Prasad, Siyu Tao, Yixing Wang, Linda Schadler, L Catherine Brinson, Wei Chen
To this end, we present a data-centric, mixed-variable Bayesian Optimization framework that integrates data from literature, experiments, and simulations for knowledge discovery and computational materials design.
no code implementations • ECCV 2018 • SouYoung Jin, Aruni RoyChowdhury, Huaizu Jiang, Ashish Singh, Aditya Prasad, Deep Chakraborty, Erik Learned-Miller
In this work, we show how large numbers of hard negatives can be obtained {\em automatically} by analyzing the output of a trained detector on video sequences.