no code implementations • 27 May 2024 • Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C. Li, Adrien Bardes, Suzanne Petryk, Oscar Mañas, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, Mark Ibrahim, Melissa Hall, Yunyang Xiong, Jonathan Lebensold, Candace Ross, Srihari Jayakumar, Chuan Guo, Diane Bouchacourt, Haider Al-Tahan, Karthik Padthe, Vasu Sharma, Hu Xu, Xiaoqing Ellen Tan, Megan Richards, Samuel Lavoie, Pietro Astolfi, Reyhane Askari Hemmat, Jun Chen, Kushal Tirumala, Rim Assouel, Mazda Moayeri, Arjang Talattof, Kamalika Chaudhuri, Zechun Liu, Xilun Chen, Quentin Garrido, Karen Ullrich, Aishwarya Agrawal, Kate Saenko, Asli Celikyilmaz, Vikas Chandra
Then, we present and discuss approaches to evaluate VLMs.
no code implementations • 1 Mar 2024 • Quentin Garrido, Mahmoud Assran, Nicolas Ballas, Adrien Bardes, Laurent Najman, Yann Lecun
Joint-Embedding Predictive Architecture (JEPA) has emerged as a promising self-supervised approach that learns by leveraging a world model.
1 code implementation • arXiv preprint 2024 • Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann Lecun, Mahmoud Assran, Nicolas Ballas
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision.
1 code implementation • NeurIPS 2023 • Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli, Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, Rama Chellappa, Andrew Gordon Wilson, Tom Goldstein
Battle of the Backbones (BoB) makes this choice easier by benchmarking a diverse suite of pretrained models, including vision-language models, those trained via self-supervised learning, and the Stable Diffusion backbone, across a diverse set of computer vision tasks ranging from classification to object detection to OOD generalization and more.
no code implementations • 24 Jul 2023 • Adrien Bardes, Jean Ponce, Yann Lecun
Self-supervised learning of visual representations has been focusing on learning content features, which do not capture object motion or location, and focus on identifying and differentiating objects in images and videos.
no code implementations • 24 Apr 2023 • Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann Lecun, Micah Goldblum
Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning.
no code implementations • 23 Apr 2023 • Ihab Bendidi, Adrien Bardes, Ethan Cohen, Alexis Lamiable, Guillaume Bollot, Auguste Genovesio
In this work, we explore this relationship, its impact on a domain other than natural images, and show that designing the transformations can be viewed as a form of supervision.
3 code implementations • 4 Oct 2022 • Adrien Bardes, Jean Ponce, Yann Lecun
Most recent self-supervised methods for learning image representations focus on either producing a global feature with invariance properties, or producing a set of local features.
no code implementations • 27 Jun 2022 • Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, Pascal Vincent
This is a little vexing, as one would hope that the network layer at which invariance is explicitly enforced by the SSL criterion during training (the last projector layer) should be the one to use for best generalization performance downstream.
no code implementations • 17 Jun 2022 • Yubei Chen, Adrien Bardes, Zengyi Li, Yann Lecun
Even with 32x32 patch representation, BagSSL achieves 62% top-1 linear probing accuracy on ImageNet.
no code implementations • 3 Jun 2022 • Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, Yann Lecun
Recent approaches in self-supervised learning of image representations can be categorized into different families of methods and, in particular, can be divided into contrastive and non-contrastive approaches.
6 code implementations • NeurIPS 2021 • Adrien Bardes, Jean Ponce, Yann Lecun
Recent self-supervised methods for image representation learning are based on maximizing the agreement between embedding vectors from different views of the same image.
Representation Learning Self-Supervised Image Classification +2
no code implementations • ICCV 2021 • Liangke Gui, Adrien Bardes, Ruslan Salakhutdinov, Alexander Hauptmann, Martial Hebert, Yu-Xiong Wang
Learning to hallucinate additional examples has recently been shown as a promising direction to address few-shot learning tasks.