no code implementations • 9 Feb 2021 • Skanda Koppula, Victor Bapst, Marc Huertas-Company, Sam Blackwell, Agnieszka Grabska-Barwinska, Sander Dieleman, Andrea Huber, Natasha Antropova, Mikolaj Binkowski, Hannah Openshaw, Adria Recasens, Fernando Caro, Avishai Deke, Yohan Dubois, Jesus Vega Ferrero, David C. Koo, Joel R. Primack, Trevor Back
Fine-grained estimation of galaxy merger stages from observations is a key problem useful for validation of our current theoretical understanding of galaxy formation.
1 code implementation • 30 Sep 2019 • Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Agnieszka Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, Marcus Hutter
This paper presents a new family of backpropagation-free neural architectures, Gated Linear Networks (GLNs).
no code implementations • ICML 2018 • Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pascanu, Raia Hadsell
This is achieved by training a network with two components: A knowledge base, capable of solving previously encountered problems, which is connected to an active column that is employed to efficiently learn the current task.
1 code implementation • 28 Mar 2018 • Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende, David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick, Demis Hassabis, Timothy Lillicrap
Animals execute goal-directed behaviours despite the limited range and scope of their sensors.
no code implementations • 5 Dec 2017 • Joel Veness, Tor Lattimore, Avishkar Bhoopchand, Agnieszka Grabska-Barwinska, Christopher Mattern, Peter Toth
This paper describes a family of probabilistic architectures designed for online learning under the logarithmic loss.
21 code implementations • 2 Dec 2016 • James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence.
Ranked #3 on
Continual Learning
on F-CelebA (10 tasks)
no code implementations • NeurIPS 2014 • Agnieszka Grabska-Barwinska, Jonathan W. Pillow
The brain uses population codes to form distributed, noise-tolerant representations of sensory and motor variables.
no code implementations • NeurIPS 2013 • Agnieszka Grabska-Barwinska, Jeff Beck, Alexandre Pouget, Peter Latham
Thus, at the behavioral level, the two algorithms make very similar predictions.