no code implementations • 13 Jul 2024 • Sanchit Ahuja, Kumar Tanmay, Hardik Hansrajbhai Chauhan, Barun Patra, Kriti Aggarwal, Luciano del Corro, Arindam Mitra, Tejas Indulal Dhamecha, Ahmed Awadallah, Monojit Choudhary, Vishrav Chaudhary, Sunayana Sitaram
Despite the remarkable success of LLMs in English, there is a significant gap in performance in non-English languages.
no code implementations • 3 Jul 2024 • Arindam Mitra, Luciano del Corro, Guoqing Zheng, Shweti Mahajan, Dany Rouhana, Andres Codas, Yadong Lu, Wei-Ge Chen, Olga Vrousgos, Corby Rosset, Fillipe Silva, Hamed Khanpour, Yash Lara, Ahmed Awadallah
We focus on using synthetic data for post-training, specifically creating data by powerful models to teach a new skill or behavior to another model, we refer to this setting as Generative Teaching.
no code implementations • 31 May 2024 • Tengyang Xie, Dylan J. Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, Alexander Rakhlin
Reinforcement learning from human feedback (RLHF) has emerged as a central tool for language model alignment.
no code implementations • 3 May 2024 • Negar Arabzadeh, Siqing Huo, Nikhil Mehta, Qinqyun Wu, Chi Wang, Ahmed Awadallah, Charles L. A. Clarke, Julia Kiseleva
The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks.
no code implementations • 22 Apr 2024 • Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, ZiYi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, Xiren Zhou
We introduce phi-3-mini, a 3. 8 billion parameter language model trained on 3. 3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3. 5 (e. g., phi-3-mini achieves 69% on MMLU and 8. 38 on MT-bench), despite being small enough to be deployed on a phone.
Ranked #5 on MMR total on MRR-Benchmark (using extra training data)
no code implementations • 4 Apr 2024 • Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, Tengyang Xie
In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences.
no code implementations • 27 Feb 2024 • Corby Rosset, Ho-Lam Chung, Guanghui Qin, Ethan C. Chau, Zhuo Feng, Ahmed Awadallah, Jennifer Neville, Nikhil Rao
We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4.
no code implementations • 16 Feb 2024 • Arindam Mitra, Hamed Khanpour, Corby Rosset, Ahmed Awadallah
Ensembling provides a substantial boost in accuracy but at a significant cost increase with multiple calls to the model (e. g., Phi-GSM uses top-48 to boost the performance from 68. 2 to 81. 5).
Ranked #35 on Arithmetic Reasoning on GSM8K (using extra training data)
no code implementations • 14 Feb 2024 • Negar Arabzadeh, Julia Kiseleva, Qingyun Wu, Chi Wang, Ahmed Awadallah, Victor Dibia, Adam Fourney, Charles Clarke
The rapid development in the field of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents to assist humans in their daily tasks.
no code implementations • 2 Dec 2023 • Corby Rosset, Guoqing Zheng, Victor Dibia, Ahmed Awadallah, Paul Bennett
The remarkable abilities of large language models (LLMs) like GPT-4 partially stem from post-training processes like Reinforcement Learning from Human Feedback (RLHF) involving human preferences encoded in a reward model.
no code implementations • 18 Nov 2023 • Arindam Mitra, Luciano del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, Hamid Palangi, Guoqing Zheng, Corby Rosset, Hamed Khanpour, Ahmed Awadallah
Research on training small LMs has often relied on imitation learning to replicate the output of more capable models.
Ranked #1 on Crass AI on BIG-bench
no code implementations • 10 Oct 2023 • Erik Jones, Hamid Palangi, Clarisse Simões, Varun Chandrasekaran, Subhabrata Mukherjee, Arindam Mitra, Ahmed Awadallah, Ece Kamar
We also find that optimizing the system message rather than the model weights can be critical; fine-tuning the entire model on the synthetic task can counterintuitively increase hallucination.
no code implementations • 5 Jul 2023 • Luciano del Corro, Allie Del Giorno, Sahaj Agarwal, Bin Yu, Ahmed Awadallah, Subhabrata Mukherjee
While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching.
4 code implementations • 5 Jun 2023 • Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, Ahmed Awadallah
To address these challenges, we develop Orca (We are working with our legal team to publicly release a diff of the model weights in accordance with LLaMA's release policy to be published at https://aka. ms/orca-lm), a 13-billion parameter model that learns to imitate the reasoning process of LFMs.
1 code implementation • 18 May 2023 • Shrestha Mohanty, Negar Arabzadeh, Julia Kiseleva, Artem Zholus, Milagro Teruel, Ahmed Awadallah, Yuxuan Sun, Kavya Srinet, Arthur Szlam
Human intelligence's adaptability is remarkable, allowing us to adjust to new tasks and multi-modal environments swiftly.
1 code implementation • 1 Nov 2022 • Alexey Skrynnik, Zoya Volovikova, Marc-Alexandre Côté, Anton Voronov, Artem Zholus, Negar Arabzadeh, Shrestha Mohanty, Milagro Teruel, Ahmed Awadallah, Aleksandr Panov, Mikhail Burtsev, Julia Kiseleva
The adoption of pre-trained language models to generate action plans for embodied agents is a promising research strategy.
1 code implementation • 24 Aug 2022 • Yue Zhao, Guoqing Zheng, Subhabrata Mukherjee, Robert McCann, Ahmed Awadallah
In this work, we propose a method to leverage weak/noisy labels (e. g., risk scores generated by machine rules for detecting malware) that are cheaper to obtain for anomaly detection.
1 code implementation • 27 May 2022 • Julia Kiseleva, Alexey Skrynnik, Artem Zholus, Shrestha Mohanty, Negar Arabzadeh, Marc-Alexandre Côté, Mohammad Aliannejadi, Milagro Teruel, Ziming Li, Mikhail Burtsev, Maartje ter Hoeve, Zoya Volovikova, Aleksandr Panov, Yuxuan Sun, Kavya Srinet, Arthur Szlam, Ahmed Awadallah
Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions.
no code implementations • 5 May 2022 • Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve, Mikhail Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, Arthur Szlam, Yuxuan Sun, Marc-Alexandre Côté, Katja Hofmann, Ahmed Awadallah, Linar Abdrazakov, Igor Churin, Putra Manggala, Kata Naszadi, Michiel van der Meer, Taewoon Kim
The primary goal of the competition is to approach the problem of how to build interactive agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment.
1 code implementation • CVPR 2022 • Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang
However, a "head-to-toe assessment" regarding the extent of redundancy in ViTs, and how much we could gain by thoroughly mitigating such, has been absent for this field.
no code implementations • 13 Oct 2021 • Julia Kiseleva, Ziming Li, Mohammad Aliannejadi, Shrestha Mohanty, Maartje ter Hoeve, Mikhail Burtsev, Alexey Skrynnik, Artem Zholus, Aleksandr Panov, Kavya Srinet, Arthur Szlam, Yuxuan Sun, Katja Hofmann, Michel Galley, Ahmed Awadallah
Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions.
no code implementations • NeurIPS 2020 • Subhabrata Mukherjee, Ahmed Awadallah
Recent success of pre-trained language models crucially hinges on fine-tuning them on large amounts of labeled data for the downstream task, that are typically expensive to acquire or difficult to access for many applications.
no code implementations • ACL 2020 • Subhabrata Mukherjee, Ahmed Awadallah
Deep and large pre-trained language models are the state-of-the-art for various natural language processing tasks.
no code implementations • 22 Apr 2018 • Xiao Yang, Miaosen Wang, Wei Wang, Madian Khabsa, Ahmed Awadallah, Daniel Kifer, C. Lee Giles
We frame this task as a binary (relevant/irrelevant) classification problem, and present an adversarial training framework to alleviate label imbalance issue.