1 code implementation • 20 Mar 2025 • Lucas Morin, Valéry Weber, Ahmed Nassar, Gerhard Ingmar Meijer, Luc van Gool, Yawei Li, Peter Staar
In this work, we present MarkushGrapher, a multi-modal approach for recognizing Markush structures in documents.
no code implementations • 14 Mar 2025 • Ahmed Nassar, Andres Marafioti, Matteo Omenetti, Maksym Lysak, Nikolaos Livathinos, Christoph Auer, Lucas Morin, Rafael Teixeira de Lima, Yusik Kim, A. Said Gurbuz, Michele Dolfi, Miquel Farré, Peter W. J. Staar
We introduce SmolDocling, an ultra-compact vision-language model targeting end-to-end document conversion.
no code implementations • 27 Jan 2025 • Nikolaos Livathinos, Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Kasper Dinkla, Yusik Kim, Shubham Gupta, Rafael Teixeira de Lima, Valery Weber, Lucas Morin, Ingmar Meijer, Viktor Kuropiatnyk, Peter W. J. Staar
We introduce Docling, an easy-to-use, self-contained, MIT-licensed, open-source toolkit for document conversion, that can parse several types of popular document formats into a unified, richly structured representation.
3 code implementations • 19 Aug 2024 • Christoph Auer, Maksym Lysak, Ahmed Nassar, Michele Dolfi, Nikolaos Livathinos, Panos Vagenas, Cesar Berrospi Ramis, Matteo Omenetti, Fabian Lindlbauer, Kasper Dinkla, Lokesh Mishra, Yusik Kim, Shubham Gupta, Rafael Teixeira de Lima, Valery Weber, Lucas Morin, Ingmar Meijer, Viktor Kuropiatnyk, Peter W. J. Staar
This technical report introduces Docling, an easy to use, self-contained, MIT-licensed open-source package for PDF document conversion.
1 code implementation • 1 May 2024 • Oshri Naparstek, Roi Pony, Inbar Shapira, Foad Abo Dahood, Ophir Azulai, Yevgeny Yaroker, Nadav Rubinstein, Maksym Lysak, Peter Staar, Ahmed Nassar, Nikolaos Livathinos, Christoph Auer, Elad Amrani, Idan Friedman, Orit Prince, Yevgeny Burshtein, Adi Raz Goldfarb, Udi Barzelay
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains.
no code implementations • 30 Nov 2023 • Lokesh Mishra, Cesar Berrospi, Kasper Dinkla, Diego Antognini, Francesco Fusco, Benedikt Bothur, Maksym Lysak, Nikolaos Livathinos, Ahmed Nassar, Panagiotis Vagenas, Lucas Morin, Christoph Auer, Michele Dolfi, Peter Staar
We present Deep Search DocQA.
1 code implementation • ICCV 2023 • Lucas Morin, Martin Danelljan, Maria Isabel Agea, Ahmed Nassar, Valery Weber, Ingmar Meijer, Peter Staar, Fisher Yu
In addition, we introduce a large-scale benchmark of annotated real molecule images, USPTO-30K, to spur research on this critical topic.
no code implementations • 24 May 2023 • Christoph Auer, Ahmed Nassar, Maksym Lysak, Michele Dolfi, Nikolaos Livathinos, Peter Staar
The results demonstrate substantial progress towards achieving robust and highly generalizing methods for document layout understanding.
no code implementations • 5 May 2023 • Maksym Lysak, Ahmed Nassar, Nikolaos Livathinos, Christoph Auer, Peter Staar
The benefits of OTSL are that it reduces the number of tokens to 5 (HTML needs 28+) and shortens the sequence length to half of HTML on average.
no code implementations • 24 May 2022 • Ahmed Nassar, Ebru Sezer
According to the obtained results, Artificial Neural Network classifier is nominated as the best classifier in both term and document level sentiment analysis (SA) for Arabic Language.
3 code implementations • CVPR 2022 • Ahmed Nassar, Nikolaos Livathinos, Maksym Lysak, Peter Staar
In this way, we can obtain the content of the table-cells from programmatic PDF's directly from the PDF source and avoid the training of the custom OCR decoders.
1 code implementation • 27 Jul 2021 • Mark Koren, Ahmed Nassar, Mykel J. Kochenderfer
Validating the safety of autonomous systems generally requires the use of high-fidelity simulators that adequately capture the variability of real-world scenarios.
no code implementations • 18 Feb 2021 • Nikolaos Livathinos, Cesar Berrospi, Maksym Lysak, Viktor Kuropiatnyk, Ahmed Nassar, Andre Carvalho, Michele Dolfi, Christoph Auer, Kasper Dinkla, Peter Staar
In this paper, we present a novel approach to document structure recovery in PDF using recurrent neural networks to process the low-level PDF data representation directly, instead of relying on a visual re-interpretation of the rendered PDF page, as has been proposed in previous literature.