no code implementations • 16 May 2024 • Dominic LaBella, Ujjwal Baid, Omaditya Khanna, Shan McBurney-Lin, Ryan McLean, Pierre Nedelec, Arif Rashid, Nourel Hoda Tahon, Talissa Altes, Radhika Bhalerao, Yaseen Dhemesh, Devon Godfrey, Fathi Hilal, Scott Floyd, Anastasia Janas, Anahita Fathi Kazerooni, John Kirkpatrick, Collin Kent, Florian Kofler, Kevin Leu, Nazanin Maleki, Bjoern Menze, Maxence Pajot, Zachary J. Reitman, Jeffrey D. Rudie, Rachit Saluja, Yury Velichko, Chunhao Wang, Pranav Warman, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Syed Muhammad Anwar, Timothy Bergquist, Sully Francis Chen, Verena Chung, Rong Chai, Gian-Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Koen van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Aria Mahtabfar, Zeke Meier, Ahmed W. Moawad, John Mongan, Marie Piraud, Russell Takeshi Shinohara, Walter F. Wiggins, Aly H. Abayazeed, Rachel Akinola, András Jakab, Michel Bilello, Maria Correia de Verdier, Priscila Crivellaro, Christos Davatzikos, Keyvan Farahani, John Freymann, Christopher Hess, Raymond Huang, Philipp Lohmann, Mana Moassefi, Matthew W. Pease, Phillipp Vollmuth, Nico Sollmann, David Diffley, Khanak K. Nandolia, Daniel I. Warren, Ali Hussain, Pascal Fehringer, Yulia Bronstein, Lisa Deptula, Evan G. Stein, Mahsa Taherzadeh, Eduardo Portela de Oliveira, Aoife Haughey, Marinos Kontzialis, Luca Saba, Benjamin Turner, Melanie M. T. Brüßeler, Shehbaz Ansari, Athanasios Gkampenis, David Maximilian Weiss, Aya Mansour, Islam H. Shawali, Nikolay Yordanov, Joel M. Stein, Roula Hourani, Mohammed Yahya Moshebah, Ahmed Magdy Abouelatta, Tanvir Rizvi, Klara Willms, Dann C. Martin, Abdullah Okar, Gennaro D'Anna, Ahmed Taha, Yasaman Sharifi, Shahriar Faghani, Dominic Kite, Marco Pinho, Muhammad Ammar Haider, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Michelle Alonso-Basanta, Javier Villanueva-Meyer, Andreas M. Rauschecker, Ayman Nada, Mariam Aboian, Adam E. Flanders, Benedikt Wiestler, Spyridon Bakas, Evan Calabrese
The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0. 976, 0. 976, and 0. 964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0. 899, 0. 904, and 0. 871, respectively.
no code implementations • 11 Aug 2023 • Yen Nhi Truong Vu, Dan Guo, Ahmed Taha, Jason Su, Thomas Paul Matthews
Deep-learning-based object detection methods show promise for improving screening mammography, but high rates of false positives can hinder their effectiveness in clinical practice.
no code implementations • 29 Mar 2023 • Trevor Tsue, Brent Mombourquette, Ahmed Taha, Thomas Paul Matthews, Yen Nhi Truong Vu, Jason Su
The original model trained on both datasets achieved a 0. 945 AUC on the combined US+UK dataset but paradoxically only 0. 838 and 0. 892 on the US and UK datasets, respectively.
1 code implementation • 11 Aug 2022 • Ahmed Taha, Yen Nhi Truong Vu, Brent Mombourquette, Thomas Paul Matthews, Jason Su, Sadanand Singh
In this paper, we tackle this complexity by leveraging a linear self-attention approximation.
1 code implementation • CVPR 2021 • Ahmed Taha, Abhinav Shrivastava, Larry Davis
We evaluate KE using relatively small datasets (e. g., CUB-200) and randomly initialized deep networks.
1 code implementation • 4 Mar 2021 • Ahmed Taha, Alex Hanson, Abhinav Shrivastava, Larry Davis
The SVMax regularizer supports both supervised and unsupervised learning.
2 code implementations • ECCV 2020 • Ahmed Taha, Xitong Yang, Abhinav Shrivastava, Larry Davis
Compared to classification networks, attention visualization for retrieval networks is hardly studied.
no code implementations • 7 Feb 2019 • Ahmed Taha, Yi-Ting Chen, Teruhisa Misu, Abhinav Shrivastava, Larry Davis
We introduce an unsupervised formulation to estimate heteroscedastic uncertainty in retrieval systems.
1 code implementation • 24 Jan 2019 • Ahmed Taha, Yi-Ting Chen, Teruhisa Misu, Abhinav Shrivastava, Larry Davis
We employ triplet loss as a feature embedding regularizer to boost classification performance.
no code implementations • 23 Jan 2019 • Ahmed Taha, Yi-Ting Chen, Xitong Yang, Teruhisa Misu, Larry Davis
We cast visual retrieval as a regression problem by posing triplet loss as a regression loss.
no code implementations • 18 Jun 2018 • Ahmed Taha, Pechin Lo, Junning Li, Tao Zhao
We propose a convolution neural network, called Kid-Net, along with a training schema to segment kidney vessels: artery, vein and collecting system.
no code implementations • 16 Jun 2018 • Ahmed Taha, Moustafa Meshry, Xitong Yang, Yi-Ting Chen, Larry Davis
The self-supervised pre-trained weights effectiveness is validated on the action recognition task.
1 code implementation • 23 Dec 2017 • Rohan Chandra, Sachin Grover, Kyungjun Lee, Moustafa Meshry, Ahmed Taha
A novel loss function, FLTBNK, is used for training the texture synthesizer.
no code implementations • 3 Feb 2017 • Ahmed Taha, Marwan Torki
In our experiments, we evaluate our approach using both human scribble and "robot user" annotations to guide the foreground/background segmentation.