no code implementations • 26 Mar 2025 • Antoine Schieb, Bilal Hadjadji, Daniel Tshokola Mweze, Natalia Fernanda Valderrama, Valentin Derangère, Laurent Arnould, Sylvain Ladoire, Alain Lalande, Louis-Oscar Morel, Nathan Vinçon
Histopathology slide digitization introduces scanner-induced domain shift that can significantly impact computational pathology models based on deep learning methods.
no code implementations • 4 Mar 2025 • Leonardo Geronzi, Antonio Martinez, Michel Rochette, Kexin Yan, Aline Bel-Brunon, Pascal Haigron, Pierre Escrig, Jacques Tomasi, Morgan Daniel, Alain Lalande, Siyu Lin, Diana Marcela Marin-Castrillon, Olivier Bouchot, Jean Porterie, Pier Paolo Valentini, Marco Evangelos Biancolini
In this study, we evaluate and compare the ability of local and global shape features to predict ascending aortic aneurysm growth.
no code implementations • 6 Feb 2025 • Tewele W. Tareke, Neree Payan, Alexandre Cochet, Laurent Arnould, Benoit Presles, Jean-Marc Vrigneaud, Fabrice Meriaudeau, Alain Lalande
After fine-tuning, the model demonstrated a DSC of 0. 78 and a HD of 4. 95 mm on PET_Fu exams.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
no code implementations • 9 Aug 2021 • Alain Lalande, Zhihao Chen, Thibaut Pommier, Thomas Decourselle, Abdul Qayyum, Michel Salomon, Dominique Ginhac, Youssef Skandarani, Arnaud Boucher, Khawla Brahim, Marleen de Bruijne, Robin Camarasa, Teresa M. Correia, Xue Feng, Kibrom B. Girum, Anja Hennemuth, Markus Huellebrand, Raabid Hussain, Matthias Ivantsits, Jun Ma, Craig Meyer, Rishabh Sharma, Jixi Shi, Nikolaos V. Tsekos, Marta Varela, Xiyue Wang, Sen yang, Hannu Zhang, Yichi Zhang, Yuncheng Zhou, Xiahai Zhuang, Raphael Couturier, Fabrice Meriaudeau
The publicly available database consists of 150 exams divided into 50 cases with normal MRI after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department.
no code implementations • 23 Jul 2021 • Youssef Skandarani, Pierre-Marc Jodoin, Alain Lalande
Results reveal that generalization performances of a segmentation neural network trained on non-expert groundtruth data is, to all practical purposes, as good as on expert groundtruth data, in particular when the non-expert gets a decent level of training, highlighting an opportunity for the efficient and cheap creation of annotations for cardiac datasets.
no code implementations • 11 May 2021 • Youssef Skandarani, Pierre-Marc Jodoin, Alain Lalande
The top-performing GANs are capable of generating realistic-looking medical images by FID standards that can fool trained experts in a visual Turing test and comply to some metrics.
Ranked #3 on
Medical Image Generation
on ACDC
1 code implementation • 4 Mar 2021 • Kibrom Berihu Girum, Gilles Créhange, Alain Lalande
Therefore, formulating image segmentation as a recurrent framework of two interconnected networks via context feedback loop can be a potential method for robust and efficient medical image analysis.
no code implementations • 30 Oct 2020 • Kibrom Berihu Girum, Youssef Skandarani, Raabid Hussain, Alexis Bozorg Grayeli, Gilles Créhange, Alain Lalande
The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region.
no code implementations • 9 Sep 2020 • Axel Aguerreberry, Ezequiel de la Rosa, Alain Lalande, Elmer Fernandez
Our approach makes use of a 3D+2D convolutional neural network (CNN) that takes as input a 3D scan and outputs the aortic diameter at a given location.
1 code implementation • 15 Jun 2020 • Nathan Painchaud, Youssef Skandarani, Thierry Judge, Olivier Bernard, Alain Lalande, Pierre-Marc Jodoin
In this paper, we present a framework for producing cardiac image segmentation maps that are guaranteed to respect pre-defined anatomical criteria, while remaining within the inter-expert variability.
no code implementations • MIDL 2019 • Abdul Qayyum, Alain Lalande, Thomas Decourselle, Thibaut Pommier, Alexandre Cochet, Fabrice Meriaudeau
The proposed model could be used for the automatic segmentation of myocardial border that is a very important step for accurate quantification of no-reflow, myocardial infarction, myocarditis, and hypertrophic cardiomyopathy, among others.
no code implementations • MIDL 2019 • Youssef Skandarani, Nathan Painchaud, Pierre-Marc Jodoin, Alain Lalande
On one side of our model is a Variational Autoencoder (VAE) trained to learn the latent representations of cardiac shapes.
no code implementations • 23 Oct 2019 • Kibrom Berihu Girum, Gilles Créhange, Raabid Hussain, Paul Michael Walker, Alain Lalande
We show that generative neural networkbased shape modeling trained on a reliable contrast imaging modality (such as MRI) can be directly applied to low contrast imaging modality (such as CT) to achieve accurate prostate segmentation.
no code implementations • 4 Sep 2019 • Raabid Hussain, Alain Lalande, Kibrom Berihu Girum, Caroline Guigou, Alexis Bozorg Grayeli
Ear consists of the smallest bones in the human body and does not contain significant amount of distinct landmark points that may be used to register a preoperative CT-scan with the surgical video in an augmented reality framework.
1 code implementation • 5 Jul 2019 • Nathan Painchaud, Youssef Skandarani, Thierry Judge, Olivier Bernard, Alain Lalande, Pierre-Marc Jodoin
In this paper, we propose a cardiac MRI segmentation method which always produces anatomically plausible results.
no code implementations • 9 Jan 2019 • Ezequiel de la Rosa, Désiré Sidibé, Thomas Decourselle, Thibault Leclercq, Alexandre Cochet, Alain Lalande
Although the technique accurately reflects the damaged tissue, there is no clinical standard for quantifying myocardial infarction (MI), demanding most algorithms to be expert dependent.
no code implementations • 24 May 2017 • Clement Zotti, Zhiming Luo, Alain Lalande, Olivier Humbert, Pierre-Marc Jodoin
In this paper, we propose a fully automatic MRI cardiac segmentation method based on a novel deep convolutional neural network (CNN) designed for the 2017 ACDC MICCAI challenge.
no code implementations • 19 May 2017 • Nathanael L. Baisa, Stéphanie Bricq, Alain Lalande
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) automatic 3-D registration is implemented and validated for small animal image volumes so that the high-resolution anatomical MRI information can be fused with the low spatial resolution of functional PET information for the localization of lesion that is currently in high demand in the study of tumor of cancer (oncology) and its corresponding preparation of pharmaceutical drugs.