Search Results for author: Albert J. Sinusas

Found 14 papers, 3 papers with code

A Generalizable 3D Diffusion Framework for Low-Dose and Few-View Cardiac SPECT

no code implementations21 Dec 2024 Huidong Xie, Weijie Gan, Wei Ji, Xiongchao Chen, Alaa Alashi, Stephanie L. Thorn, Bo Zhou, Qiong Liu, Menghua Xia, Xueqi Guo, Yi-Hwa Liu, Hongyu An, Ulugbek S. Kamilov, Ge Wang, Albert J. Sinusas, Chi Liu

This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning.

Diagnostic

Dual-Domain Coarse-to-Fine Progressive Estimation Network for Simultaneous Denoising, Limited-View Reconstruction, and Attenuation Correction of Cardiac SPECT

1 code implementation23 Jan 2024 Xiongchao Chen, Bo Zhou, Xueqi Guo, Huidong Xie, Qiong Liu, James S. Duncan, Albert J. Sinusas, Chi Liu

Additionally, Computed Tomography (CT) is commonly used to derive attenuation maps ($\mu$-maps) for attenuation correction (AC) of cardiac SPECT, but it will introduce additional radiation exposure and SPECT-CT misalignments.

Computed Tomography (CT) Denoising +1

Adaptive Correspondence Scoring for Unsupervised Medical Image Registration

no code implementations1 Dec 2023 Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

As the unsupervised learning scheme relies on intensity constancy between images to establish correspondence for reconstruction, this introduces spurious error residuals that are not modeled by the typical training objective.

Image Reconstruction Medical Image Registration +1

Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration

no code implementations1 Dec 2023 Xiaoran Zhang, Daniel H. Pak, Shawn S. Ahn, Xiaoxiao Li, Chenyu You, Lawrence H. Staib, Albert J. Sinusas, Alex Wong, James S. Duncan

To mitigate this, we propose a framework for heteroscedastic image uncertainty estimation that can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.

Image Registration Medical Image Registration

TAI-GAN: Temporally and Anatomically Informed GAN for early-to-late frame conversion in dynamic cardiac PET motion correction

1 code implementation23 Aug 2023 Xueqi Guo, Luyao Shi, Xiongchao Chen, Bo Zhou, Qiong Liu, Huidong Xie, Yi-Hwa Liu, Richard Palyo, Edward J. Miller, Albert J. Sinusas, Bruce Spottiswoode, Chi Liu, Nicha C. Dvornek

The rapid tracer kinetics of rubidium-82 ($^{82}$Rb) and high variation of cross-frame distribution in dynamic cardiac positron emission tomography (PET) raise significant challenges for inter-frame motion correction, particularly for the early frames where conventional intensity-based image registration techniques are not applicable.

Generative Adversarial Network Image Registration +1

Joint Denoising and Few-angle Reconstruction for Low-dose Cardiac SPECT Using a Dual-domain Iterative Network with Adaptive Data Consistency

no code implementations17 May 2023 Xiongchao Chen, Bo Zhou, Huidong Xie, Xueqi Guo, Qiong Liu, Albert J. Sinusas, Chi Liu

To overcome these challenges, we propose a dual-domain iterative network for end-to-end joint denoising and reconstruction from low-dose and few-angle projections of cardiac SPECT.

Denoising

Cross-domain Iterative Network for Simultaneous Denoising, Limited-angle Reconstruction, and Attenuation Correction of Low-dose Cardiac SPECT

no code implementations17 May 2023 Xiongchao Chen, Bo Zhou, Huidong Xie, Xueqi Guo, Qiong Liu, Albert J. Sinusas, Chi Liu

Additionally, computed tomography (CT)-derived attenuation maps ($\mu$-maps) are commonly used for SPECT attenuation correction (AC), but it will cause extra radiation exposure and SPECT-CT misalignments.

Computed Tomography (CT) Denoising

Cannot find the paper you are looking for? You can Submit a new open access paper.