no code implementations • 29 May 2024 • Xiang Fu, Andrew Rosen, Kyle Bystrom, Rui Wang, Albert Musaelian, Boris Kozinsky, Tess Smidt, Tommi Jaakkola
In density functional theory, charge density is the core attribute of atomic systems from which all chemical properties can be derived.
no code implementations • 20 Oct 2023 • Xiang Fu, Albert Musaelian, Anders Johansson, Tommi Jaakkola, Boris Kozinsky
When running MD, the MTS integrator then evaluates the smaller model for every time step and the larger model less frequently, accelerating simulation.
no code implementations • 24 Apr 2023 • Mgcini Keith Phuthi, Archie Mingze Yao, Simon Batzner, Albert Musaelian, Boris Kozinsky, Ekin Dogus Cubuk, Venkatasubramanian Viswanathan
The properties of lithium metal are key parameters in the design of lithium ion and lithium metal batteries.
1 code implementation • 20 Apr 2023 • Albert Musaelian, Anders Johansson, Simon Batzner, Boris Kozinsky
This work brings the leading accuracy, sample efficiency, and robustness of deep equivariant neural networks to the extreme computational scale.
1 code implementation • 17 Nov 2022 • Albert Zhu, Simon Batzner, Albert Musaelian, Boris Kozinsky
This incurs a large computational overhead in both training and prediction that often results in order-of-magnitude more expensive predictions.
2 code implementations • 13 May 2022 • Ilyes Batatia, Simon Batzner, Dávid Péter Kovács, Albert Musaelian, Gregor N. C. Simm, Ralf Drautz, Christoph Ortner, Boris Kozinsky, Gábor Csányi
The rapid progress of machine learning interatomic potentials over the past couple of years produced a number of new architectures.
3 code implementations • 11 Apr 2022 • Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Kornbluth, Boris Kozinsky
This work introduces Allegro, a strictly local equivariant deep learning interatomic potential that simultaneously exhibits excellent accuracy and scalability of parallel computation.
2 code implementations • 8 Jan 2021 • Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai Kornbluth, Nicola Molinari, Tess E. Smidt, Boris Kozinsky
This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations.