1 code implementation • 4 Feb 2024 • Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane
We introduce TopoX, a Python software suite that provides reliable and user-friendly building blocks for computing and machine learning on topological domains that extend graphs: hypergraphs, simplicial, cellular, path and combinatorial complexes.
no code implementations • 19 Dec 2023 • Karthikeyan Natesan Ramamurthy, Aldo Guzmán-Sáenz, Mustafa Hajij
To overcome such limitations, we propose Topo-MLP, a purely MLP-based simplicial neural network algorithm to learn the representation of elements in a simplicial complex without explicitly relying on message passing.
no code implementations • 15 Dec 2023 • Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Aldo Guzmán-Sáenz, Tolga Birdal, Michael T. Schaub
In this context, cell complexes are often seen as a subclass of hypergraphs with additional algebraic structure that can be exploited, e. g., to develop a spectral theory.
1 code implementation • 10 Nov 2023 • Davide Gurnari, Aldo Guzmán-Sáenz, Filippo Utro, Aritra Bose, Saugata Basu, Laxmi Parida
Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data.
1 code implementation • 26 Sep 2023 • Mathilde Papillon, Mustafa Hajij, Helen Jenne, Johan Mathe, Audun Myers, Theodore Papamarkou, Tolga Birdal, Tamal Dey, Tim Doster, Tegan Emerson, Gurusankar Gopalakrishnan, Devendra Govil, Aldo Guzmán-Sáenz, Henry Kvinge, Neal Livesay, Soham Mukherjee, Shreyas N. Samaga, Karthikeyan Natesan Ramamurthy, Maneel Reddy Karri, Paul Rosen, Sophia Sanborn, Robin Walters, Jens Agerberg, Sadrodin Barikbin, Claudio Battiloro, Gleb Bazhenov, Guillermo Bernardez, Aiden Brent, Sergio Escalera, Simone Fiorellino, Dmitrii Gavrilev, Mohammed Hassanin, Paul Häusner, Odin Hoff Gardaa, Abdelwahed Khamis, Manuel Lecha, German Magai, Tatiana Malygina, Rubén Ballester, Kalyan Nadimpalli, Alexander Nikitin, Abraham Rabinowitz, Alessandro Salatiello, Simone Scardapane, Luca Scofano, Suraj Singh, Jens Sjölund, Pavel Snopov, Indro Spinelli, Lev Telyatnikov, Lucia Testa, Maosheng Yang, Yixiao Yue, Olga Zaghen, Ali Zia, Nina Miolane
This paper presents the computational challenge on topological deep learning that was hosted within the ICML 2023 Workshop on Topology and Geometry in Machine Learning.
4 code implementations • 1 Jun 2022 • Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmán-Sáenz, Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal K. Dey, Soham Mukherjee, Shreyas N. Samaga, Neal Livesay, Robin Walters, Paul Rosen, Michael T. Schaub
Topological deep learning is a rapidly growing field that pertains to the development of deep learning models for data supported on topological domains such as simplicial complexes, cell complexes, and hypergraphs, which generalize many domains encountered in scientific computations.