Search Results for author: Alex Kurakin

Found 7 papers, 5 papers with code

AdaMatch: A Unified Approach to Semi-Supervised Learning and Domain Adaptation

5 code implementations ICLR 2022 David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas Carlini, Alex Kurakin

We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one.

Unsupervised Domain Adaptation

ReMixMatch: Semi-Supervised Learning with Distribution Matching and Augmentation Anchoring

1 code implementation ICLR 2020 David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, Colin Raffel

We improve the recently-proposed ``MixMatch semi-supervised learning algorithm by introducing two new techniques: distribution alignment and augmentation anchoring.

High Accuracy and High Fidelity Extraction of Neural Networks

no code implementations3 Sep 2019 Matthew Jagielski, Nicholas Carlini, David Berthelot, Alex Kurakin, Nicolas Papernot

In a model extraction attack, an adversary steals a copy of a remotely deployed machine learning model, given oracle prediction access.

Model extraction

Adversarial Examples that Fool both Computer Vision and Time-Limited Humans

no code implementations NeurIPS 2018 Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian Goodfellow, Jascha Sohl-Dickstein

Machine learning models are vulnerable to adversarial examples: small changes to images can cause computer vision models to make mistakes such as identifying a school bus as an ostrich.

Large-Scale Evolution of Image Classifiers

2 code implementations ICML 2017 Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc Le, Alex Kurakin

Neural networks have proven effective at solving difficult problems but designing their architectures can be challenging, even for image classification problems alone.

Hyperparameter Optimization Image Classification +1

Cannot find the paper you are looking for? You can Submit a new open access paper.