Search Results for author: Alex Warstadt

Found 26 papers, 14 papers with code

Do Language Models Have a Critical Period for Language Acquisition?

no code implementations27 Jul 2024 Ionut Constantinescu, Tiago Pimentel, Ryan Cotterell, Alex Warstadt

We vary the age of exposure by training LMs on language pairs in various experimental conditions, and find that LMs, which lack any direct analog to innate maturational stages, do not show CP effects when trained sequentially on L1 and L2.

Language Acquisition

[Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus

no code implementations9 Apr 2024 Leshem Choshen, Ryan Cotterell, Michael Y. Hu, Tal Linzen, Aaron Mueller, Candace Ross, Alex Warstadt, Ethan Wilcox, Adina Williams, Chengxu Zhuang

The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques.

Automatic Annotation of Grammaticality in Child-Caregiver Conversations

no code implementations21 Mar 2024 Mitja Nikolaus, Abhishek Agrawal, Petros Kaklamanis, Alex Warstadt, Abdellah Fourtassi

The acquisition of grammar has been a central question to adjudicate between theories of language acquisition.

Language Acquisition

Acquiring Linguistic Knowledge from Multimodal Input

no code implementations27 Feb 2024 Theodor Amariucai, Alex Warstadt

In contrast to children, language models (LMs) exhibit considerably inferior data efficiency when acquiring language.

Language Modelling

Quantifying the redundancy between prosody and text

1 code implementation28 Nov 2023 Lukas Wolf, Tiago Pimentel, Evelina Fedorenko, Ryan Cotterell, Alex Warstadt, Ethan Wilcox, Tamar Regev

Using a large spoken corpus of English audiobooks, we extract prosodic features aligned to individual words and test how well they can be predicted from LLM embeddings, compared to non-contextual word embeddings.

Word Embeddings

Call for Papers -- The BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus

1 code implementation27 Jan 2023 Alex Warstadt, Leshem Choshen, Aaron Mueller, Adina Williams, Ethan Wilcox, Chengxu Zhuang

In partnership with CoNLL and CMCL, we provide a platform for approaches to pretraining with a limited-size corpus sourced from data inspired by the input to children.

Language Acquisition Language Modelling +1

Reconstruction Probing

no code implementations21 Dec 2022 Najoung Kim, Jatin Khilnani, Alex Warstadt, Abed Qaddoumi

We propose reconstruction probing, a new analysis method for contextualized representations based on reconstruction probabilities in masked language models (MLMs).

What Artificial Neural Networks Can Tell Us About Human Language Acquisition

no code implementations17 Aug 2022 Alex Warstadt, Samuel R. Bowman

Rapid progress in machine learning for natural language processing has the potential to transform debates about how humans learn language.

Language Acquisition

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models

4 code implementations9 Jun 2022 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, Andrew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramírez, Chandan Singh, Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites, Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel, James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón, Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria Jose Ramírez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast, Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michihiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A. Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Roman Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov, Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R. Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upadhyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Piantadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Raunak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, ZiRui Wang, Ziyi Wu

BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models.

Common Sense Reasoning Math +1

What Makes Reading Comprehension Questions Difficult?

1 code implementation ACL 2022 Saku Sugawara, Nikita Nangia, Alex Warstadt, Samuel R. Bowman

For a natural language understanding benchmark to be useful in research, it has to consist of examples that are diverse and difficult enough to discriminate among current and near-future state-of-the-art systems.

Logical Reasoning Multiple-choice +2

NOPE: A Corpus of Naturally-Occurring Presuppositions in English

1 code implementation CoNLL (EMNLP) 2021 Alicia Parrish, Sebastian Schuster, Alex Warstadt, Omar Agha, Soo-Hwan Lee, Zhuoye Zhao, Samuel R. Bowman, Tal Linzen

Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid.

What Ingredients Make for an Effective Crowdsourcing Protocol for Difficult NLU Data Collection Tasks?

1 code implementation ACL 2021 Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex Warstadt, Clara Vania, Samuel R. Bowman

However, we find that training crowdworkers, and then using an iterative process of collecting data, sending feedback, and qualifying workers based on expert judgments is an effective means of collecting challenging data.

Multiple-choice Natural Language Understanding +1

Does Putting a Linguist in the Loop Improve NLU Data Collection?

no code implementations Findings (EMNLP) 2021 Alicia Parrish, William Huang, Omar Agha, Soo-Hwan Lee, Nikita Nangia, Alex Warstadt, Karmanya Aggarwal, Emily Allaway, Tal Linzen, Samuel R. Bowman

We take natural language inference as a test case and ask whether it is beneficial to put a linguist `in the loop' during data collection to dynamically identify and address gaps in the data by introducing novel constraints on the task.

Natural Language Inference

CLiMP: A Benchmark for Chinese Language Model Evaluation

no code implementations EACL 2021 Beilei Xiang, Changbing Yang, Yu Li, Alex Warstadt, Katharina Kann

CLiMP consists of sets of 1, 000 minimal pairs (MPs) for 16 syntactic contrasts in Mandarin, covering 9 major Mandarin linguistic phenomena.

Language Modelling

When Do You Need Billions of Words of Pretraining Data?

1 code implementation ACL 2021 Yian Zhang, Alex Warstadt, Haau-Sing Li, Samuel R. Bowman

We adopt four probing methods---classifier probing, information-theoretic probing, unsupervised relative acceptability judgment, and fine-tuning on NLU tasks---and draw learning curves that track the growth of these different measures of linguistic ability with respect to pretraining data volume using the MiniBERTas, a group of RoBERTa models pretrained on 1M, 10M, 100M and 1B words.

Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually)

1 code implementation EMNLP 2020 Alex Warstadt, Yian Zhang, Haau-Sing Li, Haokun Liu, Samuel R. Bowman

One reason pretraining on self-supervised linguistic tasks is effective is that it teaches models features that are helpful for language understanding.

Binary Classification

Can neural networks acquire a structural bias from raw linguistic data?

no code implementations14 Jul 2020 Alex Warstadt, Samuel R. Bowman

We argue that these results are the strongest evidence so far from artificial learners supporting the proposition that a structural bias can be acquired from raw data.

Inductive Bias Language Acquisition +1

Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition

1 code implementation ACL 2020 Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, Adina Williams

We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences.

Implicatures Natural Language Inference +3

BLiMP: The Benchmark of Linguistic Minimal Pairs for English

4 code implementations TACL 2020 Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, Samuel R. Bowman

We introduce The Benchmark of Linguistic Minimal Pairs (shortened to BLiMP), a challenge set for evaluating what language models (LMs) know about major grammatical phenomena in English.

Linguistic Analysis of Pretrained Sentence Encoders with Acceptability Judgments

no code implementations11 Jan 2019 Alex Warstadt, Samuel R. Bowman

We use this analysis set to investigate the grammatical knowledge of three pretrained encoders: BERT (Devlin et al., 2018), GPT (Radford et al., 2018), and the BiLSTM baseline from Warstadt et al. We find that these models have a strong command of complex or non-canonical argument structures like ditransitives (Sue gave Dan a book) and passives (The book was read).

CoLA General Classification +2

Verb Argument Structure Alternations in Word and Sentence Embeddings

no code implementations WS 2019 Katharina Kann, Alex Warstadt, Adina Williams, Samuel R. Bowman

For converging evidence, we further construct LaVA, a corresponding word-level dataset, and investigate whether the same syntactic features can be extracted from word embeddings.

Sentence Sentence Embedding +2

Neural Network Acceptability Judgments

2 code implementations TACL 2019 Alex Warstadt, Amanpreet Singh, Samuel R. Bowman

This paper investigates the ability of artificial neural networks to judge the grammatical acceptability of a sentence, with the goal of testing their linguistic competence.

CoLA General Classification +3

Cannot find the paper you are looking for? You can Submit a new open access paper.