Search Results for author: Alexander D'Amour

Found 22 papers, 9 papers with code

Choosing a Proxy Metric from Past Experiments

no code implementations14 Sep 2023 Nilesh Tripuraneni, Lee Richardson, Alexander D'Amour, Jacopo Soriano, Steve Yadlowsky

We introduce a new statistical framework to both define and construct an optimal proxy metric for use in a homogeneous population of randomized experiments.

Decision Making Portfolio Optimization

When does Privileged Information Explain Away Label Noise?

1 code implementation3 Mar 2023 Guillermo Ortiz-Jimenez, Mark Collier, Anant Nawalgaria, Alexander D'Amour, Jesse Berent, Rodolphe Jenatton, Effrosyni Kokiopoulou

Leveraging privileged information (PI), or features available during training but not at test time, has recently been shown to be an effective method for addressing label noise.

Adapting to Latent Subgroup Shifts via Concepts and Proxies

no code implementations21 Dec 2022 Ibrahim Alabdulmohsin, Nicole Chiou, Alexander D'Amour, Arthur Gretton, Sanmi Koyejo, Matt J. Kusner, Stephen R. Pfohl, Olawale Salaudeen, Jessica Schrouff, Katherine Tsai

We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain, and unlabeled data from the target.

Unsupervised Domain Adaptation

Beyond Invariance: Test-Time Label-Shift Adaptation for Distributions with "Spurious" Correlations

1 code implementation28 Nov 2022 Qingyao Sun, Kevin Murphy, Sayna Ebrahimi, Alexander D'Amour

However, we assume that the generative model for features $p(x|y, z)$ is invariant across domains.

Fairness and robustness in anti-causal prediction

no code implementations20 Sep 2022 Maggie Makar, Alexander D'Amour

Robustness to distribution shift and fairness have independently emerged as two important desiderata required of modern machine learning models.

Fairness

Boosting the interpretability of clinical risk scores with intervention predictions

no code implementations6 Jul 2022 Eric Loreaux, Ke Yu, Jonas Kemp, Martin Seneviratne, Christina Chen, Subhrajit Roy, Ivan Protsyuk, Natalie Harris, Alexander D'Amour, Steve Yadlowsky, Ming-Jun Chen

We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.

Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests

no code implementations NeurIPS 2021 Victor Veitch, Alexander D'Amour, Steve Yadlowsky, Jacob Eisenstein

We introduce counterfactual invariance as a formalization of the requirement that changing irrelevant parts of the input shouldn't change model predictions.

Causal Inference text-classification +1

Counterfactual Invariance to Spurious Correlations in Text Classification

no code implementations NeurIPS 2021 Victor Veitch, Alexander D'Amour, Steve Yadlowsky, Jacob Eisenstein

We introduce counterfactual invariance as a formalization of the requirement that changing irrelevant parts of the input shouldn't change model predictions.

Causal Inference text-classification +1

Causally motivated Shortcut Removal Using Auxiliary Labels

1 code implementation13 May 2021 Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, Alexander D'Amour

Shortcut learning, in which models make use of easy-to-represent but unstable associations, is a major failure mode for robust machine learning.

Causal Inference Disentanglement +1

Deconfounding Scores: Feature Representations for Causal Effect Estimation with Weak Overlap

no code implementations12 Apr 2021 Alexander D'Amour, Alexander Franks

We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.

Dimensionality Reduction

SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression

1 code implementation NeurIPS 2021 Steve Yadlowsky, Taedong Yun, Cory McLean, Alexander D'Amour

The key insight of SLOE is that the Sur and Cand\`es (2019) correction can be reparameterized in terms of the \emph{corrupted signal strength}, which is only a function of the estimated parameters $\widehat \beta$.

regression Vocal Bursts Intensity Prediction

Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding

1 code implementation18 Feb 2021 Jiajing Zheng, Alexander D'Amour, Alexander Franks

Recent work has focused on the potential and pitfalls of causal identification in observational studies with multiple simultaneous treatments.

Causal Identification Causal Inference Methodology

Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift

no code implementations19 Jun 2020 Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D'Amour, Balaji Lakshminarayanan, Jasper Snoek

Using this one line code change, we achieve state-of-the-art on recent covariate shift benchmarks and an mCE of 60. 28\% on the challenging ImageNet-C dataset; to our knowledge, this is the best result for any model that does not incorporate additional data augmentation or modification of the training pipeline.

Data Augmentation

A Biologically Plausible Benchmark for Contextual Bandit Algorithms in Precision Oncology Using in vitro Data

1 code implementation11 Nov 2019 Niklas T. Rindtorff, MingYu Lu, Nisarg A. Patel, Huahua Zheng, Alexander D'Amour

Here, we propose a benchmark dataset to evaluate contextual bandit algorithms based on real in vitro drug response of approximately 900 cancer cell lines.

Benchmarking Decision Making

Comment: Reflections on the Deconfounder

no code implementations17 Oct 2019 Alexander D'Amour

The aim of this comment (set to appear in a formal discussion in JASA) is to draw out some conclusions from an extended back-and-forth I have had with Wang and Blei regarding the deconfounder method proposed in "The Blessings of Multiple Causes" [arXiv:1805. 06826].

Causal Identification

Cannot find the paper you are looking for? You can Submit a new open access paper.