2 code implementations • Findings (NAACL) 2022 • G P Shrivatsa Bhargav, Dinesh Khandelwal, Saswati Dana, Dinesh Garg, Pavan Kapanipathi, Salim Roukos, Alexander Gray, L Venkata Subramaniam
Interestingly, we discovered that BLINK exhibits diminishing returns, i. e., it reaches 98% of its performance with just 1% of the training data and the remaining 99% of the data yields only a marginal increase of 2% in the performance.
no code implementations • 15 Jan 2022 • Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-suk Lee, Santosh Srivastava, Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav, Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang, Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme Lima, Ryan Riegel, Francois Luus, L Venkata Subramaniam
Specifically, our benchmark is a temporal question answering dataset with the following advantages: (a) it is based on Wikidata, which is the most frequently curated, openly available knowledge base, (b) it includes intermediate sparql queries to facilitate the evaluation of semantic parsing based approaches for KBQA, and (c) it generalizes to multiple knowledge bases: Freebase and Wikidata.
1 code implementation • 6 Dec 2021 • Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel, Alexander Gray
Recent work on neuro-symbolic inductive logic programming has led to promising approaches that can learn explanatory rules from noisy, real-world data.
no code implementations • EMNLP 2021 • Daiki Kimura, Masaki Ono, Subhajit Chaudhury, Ryosuke Kohita, Akifumi Wachi, Don Joven Agravante, Michiaki Tatsubori, Asim Munawar, Alexander Gray
Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided.
1 code implementation • ACL 2021 • Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michiaki Tatsubori, Don Joven Agravante, Asim Munawar, Akifumi Wachi, Ryosuke Kohita, Alexander Gray
We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications with a neuro-symbolic framework which is a combination of neural network and symbolic knowledge acquisition approach for natural language interaction games.
no code implementations • 28 Sep 2021 • Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-suk Lee, Santosh Srivastava, Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav, Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang, Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme LimaRyan Riegel, Francois Luus, L Venkata Subramaniam
In addition, to demonstrate extensi-bility to additional reasoning types we evaluate on multi-hopreasoning datasets and a new Temporal KBQA benchmarkdataset on Wikidata, namedTempQA-WD1, introduced in thispaper.
no code implementations • 25 Sep 2021 • Haifeng Qian, Radu Marinescu, Alexander Gray, Debarun Bhattacharjya, Francisco Barahona, Tian Gao, Ryan Riegel, Pravinda Sahu
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.
no code implementations • 16 Sep 2021 • Prithviraj Sen, Breno W. S. R. Carvalho, Ibrahim Abdelaziz, Pavan Kapanipathi, Francois Luus, Salim Roukos, Alexander Gray
Recent interest in Knowledge Base Completion (KBC) has led to a plethora of approaches based on reinforcement learning, inductive logic programming and graph embeddings.
no code implementations • ACL 2021 • Tahira Naseem, Srinivas Ravishankar, Nandana Mihindukulasooriya, Ibrahim Abdelaziz, Young-suk Lee, Pavan Kapanipathi, Salim Roukos, Alfio Gliozzo, Alexander Gray
Relation linking is a crucial component of Knowledge Base Question Answering systems.
1 code implementation • ACL 2021 • Hang Jiang, Sairam Gurajada, Qiuhao Lu, Sumit Neelam, Lucian Popa, Prithviraj Sen, Yunyao Li, Alexander Gray
Entity linking (EL), the task of disambiguating mentions in text by linking them to entities in a knowledge graph, is crucial for text understanding, question answering or conversational systems.
no code implementations • 3 Mar 2021 • Daiki Kimura, Subhajit Chaudhury, Akifumi Wachi, Ryosuke Kohita, Asim Munawar, Michiaki Tatsubori, Alexander Gray
Specifically, we propose an integrated method that enables model-free reinforcement learning from external knowledge sources in an LNNs-based logical constrained framework such as action shielding and guide.
4 code implementations • 28 Feb 2021 • Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese, Alexander Gray
Answering logical queries over incomplete knowledge bases is challenging because: 1) it calls for implicit link prediction, and 2) brute force answering of existential first-order logic queries is exponential in the number of existential variables.
Ranked #1 on
Question Answering
on Mathematics Dataset
1 code implementation • Findings (ACL) 2021 • Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos, Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio Gliozzo, Sairam Gurajada, Hima Karanam, Naweed Khan, Dinesh Khandelwal, Young-suk Lee, Yunyao Li, Francois Luus, Ndivhuwo Makondo, Nandana Mihindukulasooriya, Tahira Naseem, Sumit Neelam, Lucian Popa, Revanth Reddy, Ryan Riegel, Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhargav, Mo Yu
Knowledge base question answering (KBQA)is an important task in Natural Language Processing.
1 code implementation • 16 Sep 2020 • Nandana Mihindukulasooriya, Gaetano Rossiello, Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Mo Yu, Alfio Gliozzo, Salim Roukos, Alexander Gray
Knowledgebase question answering systems are heavily dependent on relation extraction and linking modules.
Ranked #1 on
Relation Linking
on QALD-7
no code implementations • 6 Aug 2020 • Ronald Fagin, Ryan Riegel, Alexander Gray
Our class of sentences are very rich, and each describes a set of possible real values for a collection of formulas of the real-valued logic, including which combinations of real values are possible.
1 code implementation • 23 Jun 2020 • Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita Likhyani, Santosh Srivastava
We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning).
no code implementations • 13 Dec 2019 • Daniel Karl I. Weidele, Justin D. Weisz, Eno Oduor, Michael Muller, Josh Andres, Alexander Gray, Dakuo Wang
Artificial Intelligence (AI) can now automate the algorithm selection, feature engineering, and hyperparameter tuning steps in a machine learning workflow.
no code implementations • 22 Oct 2019 • Charu Aggarwal, Djallel Bouneffouf, Horst Samulowitz, Beat Buesser, Thanh Hoang, Udayan Khurana, Sijia Liu, Tejaswini Pedapati, Parikshit Ram, Ambrish Rawat, Martin Wistuba, Alexander Gray
Data science is labor-intensive and human experts are scarce but heavily involved in every aspect of it.
no code implementations • 5 Sep 2019 • Dakuo Wang, Justin D. Weisz, Michael Muller, Parikshit Ram, Werner Geyer, Casey Dugan, Yla Tausczik, Horst Samulowitz, Alexander Gray
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways.
no code implementations • 1 May 2019 • Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, Alexander Gray
We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines.
no code implementations • NeurIPS 2013 • Parikshit Ram, Alexander Gray
We consider the task of nearest-neighbor search with the class of binary-space-partitioning trees, which includes kd-trees, principal axis trees and random projection trees, and try to rigorously answer the question which tree to use for nearest-neighbor search?''
no code implementations • 14 Sep 2013 • Ravi Ganti, Alexander Gray
We provide a formulation for Local Support Vector Machines (LSVMs) that generalizes previous formulations, and brings out the explicit connections to local polynomial learning used in nonparametric estimation literature.