Search Results for author: Alexander Gray

Found 27 papers, 11 papers with code

Zero-shot Entity Linking with Less Data

2 code implementations Findings (NAACL) 2022 G P Shrivatsa Bhargav, Dinesh Khandelwal, Saswati Dana, Dinesh Garg, Pavan Kapanipathi, Salim Roukos, Alexander Gray, L Venkata Subramaniam

Interestingly, we discovered that BLINK exhibits diminishing returns, i. e., it reaches 98% of its performance with just 1% of the training data and the remaining 99% of the data yields only a marginal increase of 2% in the performance.

Entity Linking Multi-Task Learning +2

A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and Probabilistic Decision Making

no code implementations21 Feb 2024 Chitra Subramanian, Miao Liu, Naweed Khan, Jonathan Lenchner, Aporva Amarnath, Sarathkrishna Swaminathan, Ryan Riegel, Alexander Gray

To enable decision-making under uncertainty and partial observability, we developed a novel probabilistic neuro-symbolic framework, Probabilistic Logical Neural Networks (PLNN), which combines the capabilities of logical reasoning with probabilistic graphical models.

Decision Making Decision Making Under Uncertainty +2

Compositional Program Generation for Few-Shot Systematic Generalization

1 code implementation28 Sep 2023 Tim Klinger, Luke Liu, Soham Dan, Maxwell Crouse, Parikshit Ram, Alexander Gray

Compositional generalization is a key ability of humans that enables us to learn new concepts from only a handful examples.

Systematic Generalization

Learning Symbolic Rules over Abstract Meaning Representations for Textual Reinforcement Learning

1 code implementation5 Jul 2023 Subhajit Chaudhury, Sarathkrishna Swaminathan, Daiki Kimura, Prithviraj Sen, Keerthiram Murugesan, Rosario Uceda-Sosa, Michiaki Tatsubori, Achille Fokoue, Pavan Kapanipathi, Asim Munawar, Alexander Gray

Text-based reinforcement learning agents have predominantly been neural network-based models with embeddings-based representation, learning uninterpretable policies that often do not generalize well to unseen games.

reinforcement-learning Representation Learning

A Benchmark for Generalizable and Interpretable Temporal Question Answering over Knowledge Bases

no code implementations15 Jan 2022 Sumit Neelam, Udit Sharma, Hima Karanam, Shajith Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nandana Mihindukulasooriya, Young-suk Lee, Santosh Srivastava, Cezar Pendus, Saswati Dana, Dinesh Garg, Achille Fokoue, G P Shrivatsa Bhargav, Dinesh Khandelwal, Srinivas Ravishankar, Sairam Gurajada, Maria Chang, Rosario Uceda-Sosa, Salim Roukos, Alexander Gray, Guilherme Lima, Ryan Riegel, Francois Luus, L Venkata Subramaniam

Specifically, our benchmark is a temporal question answering dataset with the following advantages: (a) it is based on Wikidata, which is the most frequently curated, openly available knowledge base, (b) it includes intermediate sparql queries to facilitate the evaluation of semantic parsing based approaches for KBQA, and (c) it generalizes to multiple knowledge bases: Freebase and Wikidata.

Knowledge Base Question Answering Semantic Parsing

Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks

1 code implementation6 Dec 2021 Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel, Alexander Gray

Recent work on neuro-symbolic inductive logic programming has led to promising approaches that can learn explanatory rules from noisy, real-world data.

Benchmarking Inductive logic programming

LOA: Logical Optimal Actions for Text-based Interaction Games

1 code implementation ACL 2021 Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michiaki Tatsubori, Don Joven Agravante, Asim Munawar, Akifumi Wachi, Ryosuke Kohita, Alexander Gray

We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications with a neuro-symbolic framework which is a combination of neural network and symbolic knowledge acquisition approach for natural language interaction games.

reinforcement-learning Reinforcement Learning (RL) +1

Logical Credal Networks

no code implementations25 Sep 2021 Haifeng Qian, Radu Marinescu, Alexander Gray, Debarun Bhattacharjya, Francisco Barahona, Tian Gao, Ryan Riegel, Pravinda Sahu

This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.

Combining Rules and Embeddings via Neuro-Symbolic AI for Knowledge Base Completion

no code implementations16 Sep 2021 Prithviraj Sen, Breno W. S. R. Carvalho, Ibrahim Abdelaziz, Pavan Kapanipathi, Francois Luus, Salim Roukos, Alexander Gray

Recent interest in Knowledge Base Completion (KBC) has led to a plethora of approaches based on reinforcement learning, inductive logic programming and graph embeddings.

Inductive logic programming Knowledge Base Completion +1

LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking

1 code implementation ACL 2021 Hang Jiang, Sairam Gurajada, Qiuhao Lu, Sumit Neelam, Lucian Popa, Prithviraj Sen, Yunyao Li, Alexander Gray

Entity linking (EL), the task of disambiguating mentions in text by linking them to entities in a knowledge graph, is crucial for text understanding, question answering or conversational systems.

Entity Linking Inductive Bias +2

Reinforcement Learning with External Knowledge by using Logical Neural Networks

no code implementations3 Mar 2021 Daiki Kimura, Subhajit Chaudhury, Akifumi Wachi, Ryosuke Kohita, Asim Munawar, Michiaki Tatsubori, Alexander Gray

Specifically, we propose an integrated method that enables model-free reinforcement learning from external knowledge sources in an LNNs-based logical constrained framework such as action shielding and guide.

reinforcement-learning Reinforcement Learning (RL)

Logic Embeddings for Complex Query Answering

4 code implementations28 Feb 2021 Francois Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese, Alexander Gray

Answering logical queries over incomplete knowledge bases is challenging because: 1) it calls for implicit link prediction, and 2) brute force answering of existential first-order logic queries is exponential in the number of existential variables.

Complex Query Answering Link Prediction +2

Foundations of Reasoning with Uncertainty via Real-valued Logics

no code implementations6 Aug 2020 Ronald Fagin, Ryan Riegel, Alexander Gray

Our class of sentences are very rich, and each describes a set of possible real values for a collection of formulas of the real-valued logic, including which combinations of real values are possible.

AutoAIViz: Opening the Blackbox of Automated Artificial Intelligence with Conditional Parallel Coordinates

no code implementations13 Dec 2019 Daniel Karl I. Weidele, Justin D. Weisz, Eno Oduor, Michael Muller, Josh Andres, Alexander Gray, Dakuo Wang

Artificial Intelligence (AI) can now automate the algorithm selection, feature engineering, and hyperparameter tuning steps in a machine learning workflow.

AutoML Feature Engineering

An ADMM Based Framework for AutoML Pipeline Configuration

no code implementations1 May 2019 Sijia Liu, Parikshit Ram, Deepak Vijaykeerthy, Djallel Bouneffouf, Gregory Bramble, Horst Samulowitz, Dakuo Wang, Andrew Conn, Alexander Gray

We study the AutoML problem of automatically configuring machine learning pipelines by jointly selecting algorithms and their appropriate hyper-parameters for all steps in supervised learning pipelines.

AutoML Binary Classification

Which Space Partitioning Tree to Use for Search?

no code implementations NeurIPS 2013 Parikshit Ram, Alexander Gray

We consider the task of nearest-neighbor search with the class of binary-space-partitioning trees, which includes kd-trees, principal axis trees and random projection trees, and try to rigorously answer the question which tree to use for nearest-neighbor search?''

Quantization

Local Support Vector Machines:Formulation and Analysis

no code implementations14 Sep 2013 Ravi Ganti, Alexander Gray

We provide a formulation for Local Support Vector Machines (LSVMs) that generalizes previous formulations, and brings out the explicit connections to local polynomial learning used in nonparametric estimation literature.

Cannot find the paper you are looking for? You can Submit a new open access paper.