Search Results for author: Alexander J. Smola

Found 37 papers, 18 papers with code

Faster Deep Reinforcement Learning with Slower Online Network

1 code implementation10 Dec 2021 Kavosh Asadi, Rasool Fakoor, Omer Gottesman, Taesup Kim, Michael L. Littman, Alexander J. Smola

In this paper we endow two popular deep reinforcement learning algorithms, namely DQN and Rainbow, with updates that incentivize the online network to remain in the proximity of the target network.

reinforcement-learning Reinforcement Learning (RL)

Benchmarking Multimodal AutoML for Tabular Data with Text Fields

2 code implementations4 Nov 2021 Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, Alexander J. Smola

We consider the use of automated supervised learning systems for data tables that not only contain numeric/categorical columns, but one or more text fields as well.

AutoML Benchmarking +1

Deep Explicit Duration Switching Models for Time Series

1 code implementation NeurIPS 2021 Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alexander J. Smola, Yuyang Wang, Tim Januschowski

We propose the Recurrent Explicit Duration Switching Dynamical System (RED-SDS), a flexible model that is capable of identifying both state- and time-dependent switching dynamics.

Time Series Time Series Analysis

Dive into Deep Learning

1 code implementation21 Jun 2021 Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola

This open-source book represents our attempt to make deep learning approachable, teaching readers the concepts, the context, and the code.

Math Multi-Domain Recommender Systems

Flexible Model Aggregation for Quantile Regression

1 code implementation26 Feb 2021 Rasool Fakoor, Taesup Kim, Jonas Mueller, Alexander J. Smola, Ryan J. Tibshirani

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive.

Econometrics Prediction Intervals +1

Continuous Doubly Constrained Batch Reinforcement Learning

1 code implementation NeurIPS 2021 Rasool Fakoor, Jonas Mueller, Kavosh Asadi, Pratik Chaudhari, Alexander J. Smola

Reliant on too many experiments to learn good actions, current Reinforcement Learning (RL) algorithms have limited applicability in real-world settings, which can be too expensive to allow exploration.

reinforcement-learning Reinforcement Learning (RL)

An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph

1 code implementation1 Jul 2020 Jiarui Jin, Jiarui Qin, Yuchen Fang, Kounianhua Du, Wei-Nan Zhang, Yong Yu, Zheng Zhang, Alexander J. Smola

To the best of our knowledge, this is the first work providing an efficient neighborhood-based interaction model in the HIN-based recommendations.

Recommendation Systems

DDPG++: Striving for Simplicity in Continuous-control Off-Policy Reinforcement Learning

no code implementations26 Jun 2020 Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola

This paper prescribes a suite of techniques for off-policy Reinforcement Learning (RL) that simplify the training process and reduce the sample complexity.

Continuous Control reinforcement-learning +1

Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation

1 code implementation NeurIPS 2020 Rasool Fakoor, Jonas Mueller, Nick Erickson, Pratik Chaudhari, Alexander J. Smola

Automated machine learning (AutoML) can produce complex model ensembles by stacking, bagging, and boosting many individual models like trees, deep networks, and nearest neighbor estimators.

AutoML Data Augmentation

TraDE: Transformers for Density Estimation

no code implementations6 Apr 2020 Rasool Fakoor, Pratik Chaudhari, Jonas Mueller, Alexander J. Smola

We present TraDE, a self-attention-based architecture for auto-regressive density estimation with continuous and discrete valued data.

Density Estimation Out-of-Distribution Detection

Transformer on a Diet

1 code implementation14 Feb 2020 Chenguang Wang, Zihao Ye, Aston Zhang, Zheng Zhang, Alexander J. Smola

Transformer has been widely used thanks to its ability to capture sequence information in an efficient way.

Language Modelling

Meta-Q-Learning

2 code implementations ICLR 2020 Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, Alexander J. Smola

This paper introduces Meta-Q-Learning (MQL), a new off-policy algorithm for meta-Reinforcement Learning (meta-RL).

Continuous Control Meta Reinforcement Learning +1

P3O: Policy-on Policy-off Policy Optimization

1 code implementation5 May 2019 Rasool Fakoor, Pratik Chaudhari, Alexander J. Smola

Extensive experiments on the Atari-2600 and MuJoCo benchmark suites show that this simple technique is effective in reducing the sample complexity of state-of-the-art algorithms.

Reinforcement Learning (RL)

Language Models with Transformers

1 code implementation arXiv 2019 Chenguang Wang, Mu Li, Alexander J. Smola

In this paper, we explore effective Transformer architectures for language model, including adding additional LSTM layers to better capture the sequential context while still keeping the computation efficient.

Ranked #2 on Language Modelling on Penn Treebank (Word Level) (using extra training data)

Computational Efficiency Language Modelling +1

Variational Reasoning for Question Answering with Knowledge Graph

1 code implementation12 Sep 2017 Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, Le Song

Knowledge graph (KG) is known to be helpful for the task of question answering (QA), since it provides well-structured relational information between entities, and allows one to further infer indirect facts.

Knowledge Graphs Question Answering +1

A Generic Approach for Escaping Saddle points

no code implementations5 Sep 2017 Sashank J. Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan Salakhutdinov, Alexander J. Smola

A central challenge to using first-order methods for optimizing nonconvex problems is the presence of saddle points.

Second-order methods

Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data

no code implementations ICML 2017 Manzil Zaheer, Amr Ahmed, Alexander J. Smola

Recurrent neural networks, such as long-short term memory (LSTM) networks, are powerful tools for modeling sequential data like user browsing history (Tan et al., 2016; Korpusik et al., 2016) or natural language text (Mikolov et al., 2010).

Clustering

Spectral Methods for Nonparametric Models

no code implementations31 Mar 2017 Hsiao-Yu Fish Tung, Chao-yuan Wu, Manzil Zaheer, Alexander J. Smola

Nonparametric models are versatile, albeit computationally expensive, tool for modeling mixture models.

Recurrent Recommender Networks

no code implementations WSDM 2017 Chao-yuan Wu, Amr Ahmed, Alex Beutel, Alexander J. Smola, How Jing

Recommender systems traditionally assume that user profiles and movie attributes are static.

Recommendation Systems

Variance Reduction in Stochastic Gradient Langevin Dynamics

no code implementations NeurIPS 2016 Kumar Avinava Dubey, Sashank J. Reddi, Sinead A. Williamson, Barnabas Poczos, Alexander J. Smola, Eric P. Xing

In this paper, we present techniques for reducing variance in stochastic gradient Langevin dynamics, yielding novel stochastic Monte Carlo methods that improve performance by reducing the variance in the stochastic gradient.

BIG-bench Machine Learning

Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization

no code implementations NeurIPS 2016 Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, Alexander J. Smola

We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex.

Attributing Hacks

1 code implementation7 Nov 2016 Ziqi Liu, Alexander J. Smola, Kyle Soska, Yu-Xiang Wang, Qinghua Zheng, Jun Zhou

That is, given properties of sites and the temporal occurrence of attacks, we are able to attribute individual attacks to joint causes and vulnerabilities, as well as estimating the evolution of these vulnerabilities over time.

Attribute

Explaining reviews and ratings with PACO: Poisson Additive Co-Clustering

no code implementations6 Dec 2015 Chao-yuan Wu, Alex Beutel, Amr Ahmed, Alexander J. Smola

With this novel technique we propose a new Bayesian model for joint collaborative filtering of ratings and text reviews through a sum of simple co-clusterings.

Clustering Collaborative Filtering

AdaDelay: Delay Adaptive Distributed Stochastic Convex Optimization

no code implementations20 Aug 2015 Suvrit Sra, Adams Wei Yu, Mu Li, Alexander J. Smola

We study distributed stochastic convex optimization under the delayed gradient model where the server nodes perform parameter updates, while the worker nodes compute stochastic gradients.

Graph Partitioning via Parallel Submodular Approximation to Accelerate Distributed Machine Learning

no code implementations18 May 2015 Mu Li, Dave G. Andersen, Alexander J. Smola

Distributed computing excels at processing large scale data, but the communication cost for synchronizing the shared parameters may slow down the overall performance.

BIG-bench Machine Learning Distributed Computing +1

Fast Differentially Private Matrix Factorization

no code implementations6 May 2015 Ziqi Liu, Yu-Xiang Wang, Alexander J. Smola

Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed.

Collaborative Filtering

ACCAMS: Additive Co-Clustering to Approximate Matrices Succinctly

no code implementations31 Dec 2014 Alex Beutel, Amr Ahmed, Alexander J. Smola

Matrix completion and approximation are popular tools to capture a user's preferences for recommendation and to approximate missing data.

Clustering Decision Making +1

A la Carte - Learning Fast Kernels

no code implementations19 Dec 2014 Zichao Yang, Alexander J. Smola, Le Song, Andrew Gordon Wilson

Kernel methods have great promise for learning rich statistical representations of large modern datasets.

Spectral Methods for Indian Buffet Process Inference

no code implementations NeurIPS 2014 Hsiao-Yu Tung, Alexander J. Smola

The Indian Buffet Process is a versatile statistical tool for modeling distributions over binary matrices.

Variance Reduction for Stochastic Gradient Optimization

no code implementations NeurIPS 2013 Chong Wang, Xi Chen, Alexander J. Smola, Eric P. Xing

We demonstrate how to construct the control variate for two practical problems using stochastic gradient optimization.

Variational Inference

Cannot find the paper you are looking for? You can Submit a new open access paper.