Search Results for author: Alexander Munteanu

Found 14 papers, 6 papers with code

Data subsampling for Poisson regression with pth-root-link

1 code implementation30 Oct 2024 Han Cheng Lie, Alexander Munteanu

In particular, the dependence on the number of input points can be reduced to polylogarithmic.

regression

Turnstile $\ell_p$ leverage score sampling with applications

1 code implementation1 Jun 2024 Alexander Munteanu, Simon Omlor

When combined with preconditioning techniques, our algorithm extends to $\ell_p$ leverage score sampling over turnstile data streams.

regression

Optimal bounds for $\ell_p$ sensitivity sampling via $\ell_2$ augmentation

no code implementations1 Jun 2024 Alexander Munteanu, Simon Omlor

As an application of our main result, we also obtain an $\tilde O(\varepsilon^{-2}\mu d)$ sensitivity sampling bound for logistic regression, where $\mu$ is a natural complexity measure for this problem.

Scalable Learning of Item Response Theory Models

1 code implementation1 Mar 2024 Susanne Frick, Amer Krivošija, Alexander Munteanu

Item Response Theory (IRT) models aim to assess latent abilities of $n$ examinees along with latent difficulty characteristics of $m$ test items from categorical data that indicates the quality of their corresponding answers.

The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI

no code implementations1 Jun 2023 Ahmed W. Moawad, Anastasia Janas, Ujjwal Baid, Divya Ramakrishnan, Rachit Saluja, Nader Ashraf, Nazanin Maleki, Leon Jekel, Nikolay Yordanov, Pascal Fehringer, Athanasios Gkampenis, Raisa Amiruddin, Amirreza Manteghinejad, Maruf Adewole, Jake Albrecht, Udunna Anazodo, Sanjay Aneja, Syed Muhammad Anwar, Timothy Bergquist, Veronica Chiang, Verena Chung, Gian Marco Conte, Farouk Dako, James Eddy, Ivan Ezhov, Nastaran Khalili, Keyvan Farahani, Juan Eugenio Iglesias, Zhifan Jiang, Elaine Johanson, Anahita Fathi Kazerooni, Florian Kofler, Kiril Krantchev, Dominic LaBella, Koen van Leemput, Hongwei Bran Li, Marius George Linguraru, Xinyang Liu, Zeke Meier, Bjoern H Menze, Harrison Moy, Klara Osenberg, Marie Piraud, Zachary Reitman, Russell Takeshi Shinohara, Chunhao Wang, Benedikt Wiestler, Walter Wiggins, Umber Shafique, Klara Willms, Arman Avesta, Khaled Bousabarah, Satrajit Chakrabarty, Nicolo Gennaro, Wolfgang Holler, Manpreet Kaur, Pamela Lamontagne, MingDe Lin, Jan Lost, Daniel S. Marcus, Ryan Maresca, Sarah Merkaj, Gabriel Cassinelli Pedersen, Marc von Reppert, Aristeidis Sotiras, Oleg Teytelboym, Niklas Tillmans, Malte Westerhoff, Ayda Youssef, Devon Godfrey, Scott Floyd, Andreas Rauschecker, Javier Villanueva-Meyer, Irada Pfluger, Jaeyoung Cho, Martin Bendszus, Gianluca Brugnara, Justin Cramer, Gloria J. Guzman Perez-Carillo, Derek R. Johnson, Anthony Kam, Benjamin Yin Ming Kwan, Lillian Lai, Neil U. Lall, Fatima Memon, Mark Krycia, Satya Narayana Patro, Bojan Petrovic, Tiffany Y. So, Gerard Thompson, Lei Wu, E. Brooke Schrickel, Anu Bansal, Frederik Barkhof, Cristina Besada, Sammy Chu, Jason Druzgal, Alexandru Dusoi, Luciano Farage, Fabricio Feltrin, Amy Fong, Steve H. Fung, R. Ian Gray, Ichiro Ikuta, Michael Iv, Alida A. Postma, Amit Mahajan, David Joyner, Chase Krumpelman, Laurent Letourneau-Guillon, Christie M. Lincoln, Mate E. Maros, Elka Miller, Fanny Moron, Esther A. Nimchinsky, Ozkan Ozsarlak, Uresh Patel, Saurabh Rohatgi, Atin Saha, Anousheh Sayah, Eric D. Schwartz, Robert Shih, Mark S. Shiroishi, Juan E. Small, Manoj Tanwar, Jewels Valerie, Brent D. Weinberg, Matthew L. White, Robert Young, Vahe M. Zohrabian, Aynur Azizova, Melanie Maria Theresa Bruseler, Mohanad Ghonim, Mohamed Ghonim, Abdullah Okar, Luca Pasquini, Yasaman Sharifi, Gagandeep Singh, Nico Sollmann, Theodora Soumala, Mahsa Taherzadeh, Philipp Vollmuth, Martha Foltyn-Dumitru, Ajay Malhotra, Aly H. Abayazeed, Francesco Dellepiane, Philipp Lohmann, Victor M. Perez-Garcia, Hesham Elhalawani, Maria Correia de Verdier, Sanaria Al-Rubaiey, Rui Duarte Armindo, Kholod Ashraf, Moamen M. Asla, Mohamed Badawy, Jeroen Bisschop, Nima Broomand Lomer, Jan Bukatz, Jim Chen, Petra Cimflova, Felix Corr, Alexis Crawley, Lisa Deptula, Tasneem Elakhdar, Islam H. Shawali, Shahriar Faghani, Alexandra Frick, Vaibhav Gulati, Muhammad Ammar Haider, Fatima Hierro, Rasmus Holmboe Dahl, Sarah Maria Jacobs, Kuang-chun Jim Hsieh, Sedat G. Kandemirli, Katharina Kersting, Laura Kida, Sofia Kollia, Ioannis Koukoulithras, Xiao Li, Ahmed Abouelatta, Aya Mansour, Ruxandra-Catrinel Maria-Zamfirescu, Marcela Marsiglia, Yohana Sarahi Mateo-Camacho, Mark McArthur, Olivia McDonnell, Maire McHugh, Mana Moassefi, Samah Mostafa Morsi, Alexander Munteanu, Khanak K. Nandolia, Syed Raza Naqvi, Yalda Nikanpour, Mostafa Alnoury, Abdullah Mohamed Aly Nouh, Francesca Pappafava, Markand D. Patel, Samantha Petrucci, Eric Rawie, Scott Raymond, Borna Roohani, Sadeq Sabouhi, Laura M. Sanchez-Garcia, Zoe Shaked, Pokhraj P. Suthar, Talissa Altes, Edvin Isufi, Yaseen Dhemesh, Jaime Gass, Jonathan Thacker, Abdul Rahman Tarabishy, Benjamin Turner, Sebastiano Vacca, George K. Vilanilam, Daniel Warren, David Weiss, Fikadu Worede, Sara Yousry, Wondwossen Lerebo, Alejandro Aristizabal, Alexandros Karargyris, Hasan Kassem, Sarthak Pati, Micah Sheller, Katherine E. Link, Evan Calabrese, Nourel Hoda Tahon, Ayman Nada, Yuri S. Velichko, Spyridon Bakas, Jeffrey D. Rudie, Mariam Aboian

Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing.

Benchmarking Brain Tumor Segmentation +4

Optimal Sketching Bounds for Sparse Linear Regression

no code implementations5 Apr 2023 Tung Mai, Alexander Munteanu, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, David P. Woodruff

For this problem, under the $\ell_2$ norm, we observe an upper bound of $O(k \log (d)/\varepsilon + k\log(k/\varepsilon)/\varepsilon^2)$ rows, showing that sparse recovery is strictly easier to sketch than sparse regression.

regression

Almost Linear Constant-Factor Sketching for $\ell_1$ and Logistic Regression

1 code implementation31 Mar 2023 Alexander Munteanu, Simon Omlor, David Woodruff

We improve upon previous oblivious sketching and turnstile streaming results for $\ell_1$ and logistic regression, giving a much smaller sketching dimension achieving $O(1)$-approximation and yielding an efficient optimization problem in the sketch space.

regression

Bounding the Width of Neural Networks via Coupled Initialization -- A Worst Case Analysis

no code implementations26 Jun 2022 Alexander Munteanu, Simon Omlor, Zhao Song, David P. Woodruff

A common method in training neural networks is to initialize all the weights to be independent Gaussian vectors.

$p$-Generalized Probit Regression and Scalable Maximum Likelihood Estimation via Sketching and Coresets

1 code implementation25 Mar 2022 Alexander Munteanu, Simon Omlor, Christian Peters

We study the $p$-generalized probit regression model, which is a generalized linear model for binary responses.

regression

Oblivious sketching for logistic regression

1 code implementation14 Jul 2021 Alexander Munteanu, Simon Omlor, David Woodruff

Our sketch can be computed in input sparsity time over a turnstile data stream and reduces the size of a $d$-dimensional data set from $n$ to only $\operatorname{poly}(\mu d\log n)$ weighted points, where $\mu$ is a useful parameter which captures the complexity of compressing the data.

regression

Random Projections and Sampling Algorithms for Clustering of High-Dimensional Polygonal Curves

no code implementations NeurIPS 2019 Stefan Meintrup, Alexander Munteanu, Dennis Rohde

We study the $k$-median clustering problem for high-dimensional polygonal curves with finite but unbounded number of vertices.

Clustering

Probabilistic smallest enclosing ball in high dimensions via subgradient sampling

no code implementations28 Feb 2019 Amer Krivošija, Alexander Munteanu

This is achieved via a novel combination of sampling techniques for clustering problems in metric spaces with the framework of stochastic subgradient descent.

Clustering Vocal Bursts Intensity Prediction

On Coresets for Logistic Regression

no code implementations NeurIPS 2018 Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, David P. Woodruff

For data sets with bounded $\mu(X)$-complexity, we show that a novel sensitivity sampling scheme produces the first provably sublinear $(1\pm\varepsilon)$-coreset.

regression

Coresets for Dependency Networks

no code implementations9 Oct 2017 Alejandro Molina, Alexander Munteanu, Kristian Kersting

Many applications infer the structure of a probabilistic graphical model from data to elucidate the relationships between variables.

Cannot find the paper you are looking for? You can Submit a new open access paper.