no code implementations • 11 Dec 2024 • Alexander Pan, Lijie Chen, Jacob Steinhardt
Interpretability methods seek to understand language model representations, yet the outputs of most such methods -- circuits, vectors, scalars -- are not immediately human-interpretable.
1 code implementation • 31 Jul 2024 • Richard Ren, Steven Basart, Adam Khoja, Alice Gatti, Long Phan, Xuwang Yin, Mantas Mazeika, Alexander Pan, Gabriel Mukobi, Ryan H. Kim, Stephen Fitz, Dan Hendrycks
As artificial intelligence systems grow more powerful, there has been increasing interest in "AI safety" research to address emerging and future risks.
1 code implementation • 15 Apr 2024 • Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman, Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond, Eric Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Zhang, Ruiqi Zhong, Seán Ó hÉigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung, Lilian Edwards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwan, Yoshua Bengio, Danqi Chen, Philip H. S. Torr, Samuel Albanie, Tegan Maharaj, Jakob Foerster, Florian Tramer, He He, Atoosa Kasirzadeh, Yejin Choi, David Krueger
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs).
1 code implementation • 5 Mar 2024 • Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D. Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, Dan Hendrycks
To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs.
1 code implementation • 9 Feb 2024 • Alexander Pan, Erik Jones, Meena Jagadeesan, Jacob Steinhardt
Language models influence the external world: they query APIs that read and write to web pages, generate content that shapes human behavior, and run system commands as autonomous agents.
5 code implementations • 2 Oct 2023 • Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, Dan Hendrycks
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience.
Ranked #3 on
Question Answering
on TruthfulQA
1 code implementation • 6 Apr 2023 • Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel Li, Steven Basart, Thomas Woodside, Jonathan Ng, HANLIN ZHANG, Scott Emmons, Dan Hendrycks
And how do we measure these behaviors in general-purpose models such as GPT-4?
1 code implementation • ICLR 2022 • Alexander Pan, Kush Bhatia, Jacob Steinhardt
Reward hacking -- where RL agents exploit gaps in misspecified reward functions -- has been widely observed, but not yet systematically studied.
no code implementations • 18 Oct 2021 • Alexander Pan, Yongkyun Lee, huan zhang, Yize Chen, Yuanyuan Shi
Due to the proliferation of renewable energy and its intrinsic intermittency and stochasticity, current power systems face severe operational challenges.