no code implementations • 5 Nov 2024 • Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl, Haitham Bou-Ammar, Jun Wang
We introduce Agent K v1. 0, an end-to-end autonomous data science agent designed to automate, optimise, and generalise across diverse data science tasks.
2 code implementations • NeurIPS 2023 • Alexandre Maraval, Matthieu Zimmer, Antoine Grosnit, Haitham Bou Ammar
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
no code implementations • 27 May 2022 • Alexandre Maraval, Matthieu Zimmer, Antoine Grosnit, Rasul Tutunov, Jun Wang, Haitham Bou Ammar
First, we notice that these models are trained on uniformly distributed inputs, which impairs predictive accuracy on non-uniform data - a setting arising from any typical BO loop due to exploration-exploitation trade-offs.
no code implementations • 15 Jan 2021 • Vincent Moens, Hang Ren, Alexandre Maraval, Rasul Tutunov, Jun Wang, Haitham Ammar
In this paper, we propose CI-VI an efficient and scalable solver for semi-implicit variational inference (SIVI).