21 code implementations • NeurIPS 2019 • Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen Teoh, Jose Sotelo, Alexandre de Brebisson, Yoshua Bengio, Aaron Courville
In this paper, we show that it is possible to train GANs reliably to generate high quality coherent waveforms by introducing a set of architectural changes and simple training techniques.
no code implementations • 20 Jan 2018 • Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeswar, Alexandre de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen, Joelle Pineau, Yoshua Bengio
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition.
1 code implementation • 6 Dec 2017 • Rithesh Kumar, Jose Sotelo, Kundan Kumar, Alexandre de Brebisson, Yoshua Bengio
We present ObamaNet, the first architecture that generates both audio and synchronized photo-realistic lip-sync videos from any new text.
no code implementations • 7 Sep 2017 • Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeshwar, Alexandre de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski, Alexandre Nguyen, Joelle Pineau, Yoshua Bengio
By applying reinforcement learning to crowdsourced data and real-world user interactions, the system has been trained to select an appropriate response from the models in its ensemble.
2 code implementations • 9 Feb 2015 • Alexandre de Brebisson, Giovanni Montana
To our knowledge, our technique is the first to tackle the anatomical segmentation of the whole brain using deep neural networks.