no code implementations • 30 Mar 2025 • Manel Gil-Sorribes, Alexis Molina
Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety.
no code implementations • 5 Nov 2024 • Adrián Morales-Pastor, Raquel Vázquez-Reza, Miłosz Wieczór, Clàudia Valverde, Manel Gil-Sorribes, Bertran Miquel-Oliver, Álvaro Ciudad, Alexis Molina
RNA is a vital biomolecule with numerous roles and functions within cells, and interest in targeting it for therapeutic purposes has grown significantly in recent years.
no code implementations • 8 Sep 2024 • Guillermo Bernárdez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon, Miquel Ferriol-Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen, Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree Vadgama, Erik Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K Ahmed, Pengfei Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea Cavallo, Yun Young Choi, George Dasoulas, Matouš Elphick, Giordan Escalona, Dominik Filipiak, Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski, Veljko Kovač, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro Martinez, Marissa Masden, Sebastian Mežnar, Bertran Miquel-Oliver, Alexis Molina, Alexander Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max Schattauer, Pavel Snopov, Julian Suk, Valentina Sánchez, Mauricio Tec, Francesco Vaccarino, Jonas Verhellen, Frederic Wantiez, Alexander Weers, Patrik Zajec, Blaž Škrlj, Nina Miolane
This paper describes the 2nd edition of the ICML Topological Deep Learning Challenge that was hosted within the ICML 2024 ELLIS Workshop on Geometry-grounded Representation Learning and Generative Modeling (GRaM).
no code implementations • 13 Jun 2024 • Álvaro Ciudad, Adrián Morales-Pastor, Laura Malo, Isaac Filella-Mercè, Victor Guallar, Alexis Molina
In this study, we present ScoreFormer, a novel graph transformer model designed to accurately predict molecular docking scores, thereby optimizing high-throughput virtual screening (HTVS) in drug discovery.
no code implementations • 11 Jun 2024 • Yaiza Serrano, Álvaro Ciudad, Alexis Molina
While protein language models (pLMs) have transformed biological research, the scaling laws governing their improvement remain underexplored.
3 code implementations • 9 Jun 2024 • Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Mustafa Hajij, Martin Carrasco, Pavlo Vasylenko, Mathilde Papillon, Ghada Zamzmi, Michael T. Schaub, Jonas Verhellen, Pavel Snopov, Bertran Miquel-Oliver, Manel Gil-Sorribes, Alexis Molina, Victor Guallar, Theodore Long, Julian Suk, Patryk Rygiel, Alexander Nikitin, Giordan Escalona, Michael Banf, Dominik Filipiak, Max Schattauer, Liliya Imasheva, Alvaro Martinez, Halley Fritze, Marissa Masden, Valentina Sánchez, Manuel Lecha, Andrea Cavallo, Claudio Battiloro, Matt Piekenbrock, Mauricio Tec, George Dasoulas, Nina Miolane, Simone Scardapane, Theodore Papamarkou
This work introduces TopoBench, an open-source library designed to standardize benchmarking and accelerate research in topological deep learning (TDL).
no code implementations • 9 Apr 2024 • Raúl Miñán, Javier Gallardo, Álvaro Ciudad, Alexis Molina
This work introduces GeoDirDock (GDD), a novel approach to molecular docking that enhances the accuracy and physical plausibility of ligand docking predictions.
no code implementations • 4 May 2023 • Isaac Filella-Merce, Alexis Molina, Marek Orzechowski, Lucía Díaz, Yang Ming Zhu, Julia Vilalta Mor, Laura Malo, Ajay S Yekkirala, Soumya Ray, Victor Guallar
To improve the applicability domain of GM methods, we have developed a workflow based on a variational autoencoder coupled with active learning steps.