no code implementations • 29 Sep 2023 • Po-chun Hsu, Ali Elkahky, Wei-Ning Hsu, Yossi Adi, Tu Anh Nguyen, Jade Copet, Emmanuel Dupoux, Hung-Yi Lee, Abdelrahman Mohamed
Self-supervised learning (SSL) techniques have achieved remarkable results in various speech processing tasks.
3 code implementations • arXiv 2023 • Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning Hsu, Alexis Conneau, Michael Auli
Expanding the language coverage of speech technology has the potential to improve access to information for many more people.
1 code implementation • 29 Jun 2022 • Paden Tomasello, Akshat Shrivastava, Daniel Lazar, Po-chun Hsu, Duc Le, Adithya Sagar, Ali Elkahky, Jade Copet, Wei-Ning Hsu, Yossi Adi, Robin Algayres, Tu Ahn Nguyen, Emmanuel Dupoux, Luke Zettlemoyer, Abdelrahman Mohamed
Furthermore, in addition to the human-recorded audio, we are releasing a TTS-generated version to benchmark the performance for low-resource domain adaptation of end-to-end SLU systems.
Automatic Speech Recognition Automatic Speech Recognition (ASR) +4
no code implementations • 30 Mar 2022 • Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello, Robin Algayres, Benoit Sagot, Abdelrahman Mohamed, Emmanuel Dupoux
We introduce dGSLM, the first "textless" model able to generate audio samples of naturalistic spoken dialogues.
1 code implementation • NAACL (ACL) 2022 • Eugene Kharitonov, Jade Copet, Kushal Lakhotia, Tu Anh Nguyen, Paden Tomasello, Ann Lee, Ali Elkahky, Wei-Ning Hsu, Abdelrahman Mohamed, Emmanuel Dupoux, Yossi Adi
Textless spoken language processing research aims to extend the applicability of standard NLP toolset onto spoken language and languages with few or no textual resources.
no code implementations • 2 Feb 2022 • Akshat Shrivastava, Shrey Desai, Anchit Gupta, Ali Elkahky, Aleksandr Livshits, Alexander Zotov, Ahmed Aly
We tackle this problem by introducing scenario-based semantic parsing: a variant of the original task which first requires disambiguating an utterance's "scenario" (an intent-slot template with variable leaf spans) before generating its frame, complete with ontology and utterance tokens.
no code implementations • WS 2019 • Mohammed Attia, Younes Samih, Ali Elkahky, Hamdy Mubarak, Ahmed Abdelali, Kareem Darwish
When speakers code-switch between their native language and a second language or language variant, they follow a syntactic pattern where words and phrases from the embedded language are inserted into the matrix language.
no code implementations • WS 2019 • Mohammed Attia, Ali Elkahky
Segmentation serves as an integral part in many NLP applications including Machine Translation, Parsing, and Information Retrieval.
no code implementations • EMNLP 2018 • Ali Elkahky, Kellie Webster, Daniel Andor, Emily Pitler
English part-of-speech taggers regularly make egregious errors related to noun-verb ambiguity, despite having achieved 97{\%}+ accuracy on the WSJ Penn Treebank since 2002.
no code implementations • CONLL 2017 • Daniel Zeman, Martin Popel, Milan Straka, Jan Haji{\v{c}}, Joakim Nivre, Filip Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinkov{\'a}, Jan Haji{\v{c}} jr., Jaroslava Hlav{\'a}{\v{c}}ov{\'a}, V{\'a}clava Kettnerov{\'a}, Zde{\v{n}}ka Ure{\v{s}}ov{\'a}, Jenna Kanerva, Stina Ojala, Anna Missil{\"a}, Christopher D. Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi Kanayama, Valeria de Paiva, Kira Droganova, H{\'e}ctor Mart{\'\i}nez Alonso, {\c{C}}a{\u{g}}r{\i} {\c{C}}{\"o}ltekin, Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, M, Michael l, Jesse Kirchner, Hector Fern Alcalde, ez, Jana Strnadov{\'a}, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada, Sookyoung Kwak, Gustavo Mendon{\c{c}}a, L, Tatiana o, Rattima Nitisaroj, Josie Li
The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets.
1 code implementation • WWW 2015 • Ali Elkahky, Yang song, Xiaodong He
We extend the model to jointly learn from features of items from different domains and user features by introducing a multi-view Deep Learning model.