no code implementations • 31 Dec 2018 • Alireza Sedghi, Jie Luo, Alireza Mehrtash, Steve Pieper, Clare M. Tempany, Tina Kapur, Parvin Mousavi, William M. Wells III
This paper establishes an information theoretic framework for deep metric based image registration techniques.
no code implementations • 4 Apr 2018 • Alireza Sedghi, Jie Luo, Alireza Mehrtash, Steve Pieper, Clare M. Tempany, Tina Kapur, Parvin Mousavi, William M. Wells III
In this paper, we propose a strategy for learning such metrics from roughly aligned training data.
no code implementations • 20 Mar 2018 • Jie Luo, Matt Toews, Ines Machado, Sarah Frisken, Miaomiao Zhang, Frank Preiswerk, Alireza Sedghi, Hongyi Ding, Steve Pieper, Polina Golland, Alexandra Golby, Masashi Sugiyama, William M. Wells III
Kernels of the GP are estimated by using variograms and a discrete grid search method.
no code implementations • 14 Mar 2018 • Jie Luo, Alireza Sedghi, Karteek Popuri, Dana Cobzas, Miaomiao Zhang, Frank Preiswerk, Matthew Toews, Alexandra Golby, Masashi Sugiyama, William M. Wells III, Sarah Frisken
For probabilistic image registration (PIR), the predominant way to quantify the registration uncertainty is using summary statistics of the distribution of transformation parameters.