Search Results for author: Amando Estela

Found 6 papers, 1 papers with code

A User Study of the Incremental Learning in NMT

no code implementations EAMT 2020 Miguel Domingo, Mercedes García-Martínez, Álvaro Peris, Alexandre Helle, Amando Estela, Laurent Bié, Francisco Casacuberta, Manuel Herranz

Adaptive neural machine translation systems, able to incrementally update the underlying models under an online learning regime, have been proven to be useful to improve the efficiency of this workflow.

Incremental Learning Machine Translation +2

Neural Translation for the European Union (NTEU) Project

no code implementations EAMT 2020 Laurent Bié, Aleix Cerdà-i-Cucó, Hans Degroote, Amando Estela, Mercedes García-Martínez, Manuel Herranz, Alejandro Kohan, Maite Melero, Tony O’Dowd, Sinéad O’Gorman, Mārcis Pinnis, Roberts Rozis, Riccardo Superbo, Artūrs Vasiļevskis

The Neural Translation for the European Union (NTEU) project aims to build a neural engine farm with all European official language combinations for eTranslation, without the necessity to use a high-resourced language as a pivot.


Europeana Translate: Providing multilingual access to digital cultural heritage

no code implementations EAMT 2022 Eirini Kaldeli, Mercedes García-Martínez, Antoine Isaac, Paolo Sebastiano Scalia, Arne Stabenau, Iván Lena Almor, Carmen Grau Lacal, Martín Barroso Ordóñez, Amando Estela, Manuel Herranz

Europeana Translate is a project funded under the Connecting European Facility with the objective to take advantage of state-of-the-art machine translation in order to increase the multilinguality of resources in the cultural heritage domain

Machine Translation Translation

Cannot find the paper you are looking for? You can Submit a new open access paper.