Search Results for author: Ameer Haj-Ali

Found 8 papers, 5 papers with code

ProTuner: Tuning Programs with Monte Carlo Tree Search

no code implementations27 May 2020 Ameer Haj-Ali, Hasan Genc, Qijing Huang, William Moses, John Wawrzynek, Krste Asanović, Ion Stoica

We explore applying the Monte Carlo Tree Search (MCTS) algorithm in a notoriously difficult task: tuning programs for high-performance deep learning and image processing.

Scheduling

AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs

1 code implementation6 Jan 2020 Keertana Settaluri, Ameer Haj-Ali, Qijing Huang, Kourosh Hakhamaneshi, Borivoje Nikolic

Domain specialization under energy constraints in deeply-scaled CMOS has been driving the need for agile development of Systems on a Chip (SoCs).

Signal Processing

NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning

1 code implementation20 Sep 2019 Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Sophia Shao, Krste Asanovic, Ion Stoica

However, these models are unable to capture the data dependency, the computation graph, or the organization of instructions.

Distributed, Parallel, and Cluster Computing Performance Programming Languages

A View on Deep Reinforcement Learning in System Optimization

no code implementations4 Aug 2019 Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Joseph Gonzalez, Krste Asanovic, Ion Stoica

We propose a set of essential metrics to guide future works in evaluating the efficacy of using deep reinforcement learning in system optimization.

reinforcement-learning Reinforcement Learning +1

AutoPhase: Compiler Phase-Ordering for High Level Synthesis with Deep Reinforcement Learning

1 code implementation15 Jan 2019 Ameer Haj-Ali, Qijing Huang, William Moses, John Xiang, Ion Stoica, Krste Asanovic, John Wawrzynek

We implement a framework in the context of the LLVM compiler to optimize the ordering for HLS programs and compare the performance of deep reinforcement learning to state-of-the-art algorithms that address the phase-ordering problem.

reinforcement-learning Reinforcement Learning +1

Cannot find the paper you are looking for? You can Submit a new open access paper.