Search Results for author: Anchit Gupta

Found 13 papers, 5 papers with code

Retrieve-and-Fill for Scenario-based Task-Oriented Semantic Parsing

no code implementations2 Feb 2022 Akshat Shrivastava, Shrey Desai, Anchit Gupta, Ali Elkahky, Aleksandr Livshits, Alexander Zotov, Ahmed Aly

We tackle this problem by introducing scenario-based semantic parsing: a variant of the original task which first requires disambiguating an utterance's "scenario" (an intent-slot template with variable leaf spans) before generating its frame, complete with ontology and utterance tokens.

Frame Semantic Parsing

Simple Local Attentions Remain Competitive for Long-Context Tasks

1 code implementation14 Dec 2021 Wenhan Xiong, Barlas Oğuz, Anchit Gupta, Xilun Chen, Diana Liskovich, Omer Levy, Wen-tau Yih, Yashar Mehdad

Many NLP tasks require processing long contexts beyond the length limit of pretrained models.

Salient Phrase Aware Dense Retrieval: Can a Dense Retriever Imitate a Sparse One?

1 code implementation13 Oct 2021 Xilun Chen, Kushal Lakhotia, Barlas Oğuz, Anchit Gupta, Patrick Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta, Wen-tau Yih

Despite their recent popularity and well-known advantages, dense retrievers still lag behind sparse methods such as BM25 in their ability to reliably match salient phrases and rare entities in the query and to generalize to out-of-domain data.

Open-Domain Question Answering Passage Retrieval

Domain-matched Pre-training Tasks for Dense Retrieval

1 code implementation28 Jul 2021 Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Piktus, Xilun Chen, Sebastian Riedel, Wen-tau Yih, Sonal Gupta, Yashar Mehdad

Pre-training on larger datasets with ever increasing model size is now a proven recipe for increased performance across almost all NLP tasks.

 Ranked #1 on Passage Retrieval on Natural Questions (using extra training data)

Passage Retrieval

MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark

no code implementations EACL 2021 Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, Yashar Mehdad

Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets.

Semantic Parsing Translation

Better Fine-Tuning by Reducing Representational Collapse

3 code implementations ICLR 2021 Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal, Luke Zettlemoyer, Sonal Gupta

Although widely adopted, existing approaches for fine-tuning pre-trained language models have been shown to be unstable across hyper-parameter settings, motivating recent work on trust region methods.

Abstractive Text Summarization Cross-Lingual Natural Language Inference

Scaling Robot Supervision to Hundreds of Hours with RoboTurk: Robotic Manipulation Dataset through Human Reasoning and Dexterity

no code implementations11 Nov 2019 Ajay Mandlekar, Jonathan Booher, Max Spero, Albert Tung, Anchit Gupta, Yuke Zhu, Animesh Garg, Silvio Savarese, Li Fei-Fei

We evaluate the quality of our platform, the diversity of demonstrations in our dataset, and the utility of our dataset via quantitative and qualitative analysis.

SURREAL-System: Fully-Integrated Stack for Distributed Deep Reinforcement Learning

no code implementations27 Sep 2019 Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa, Silvio Savarese, Li Fei-Fei

We present an overview of SURREAL-System, a reproducible, flexible, and scalable framework for distributed reinforcement learning (RL).

OpenAI Gym reinforcement-learning

RoboTurk: A Crowdsourcing Platform for Robotic Skill Learning through Imitation

no code implementations7 Nov 2018 Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, Li Fei-Fei

Imitation Learning has empowered recent advances in learning robotic manipulation tasks by addressing shortcomings of Reinforcement Learning such as exploration and reward specification.

Imitation Learning

Stochastic Shortest Path with Energy Constraints in POMDPs

no code implementations24 Feb 2016 Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Anchit Gupta, Petr Novotný

Finally, we show experimentally that our algorithm performs well and computes succinct policies on a number of POMDP instances from the literature that were naturally enhanced with energy levels.

Cannot find the paper you are looking for? You can Submit a new open access paper.