no code implementations • 21 Jul 2023 • Brendan D. Tracey, Andrea Michi, Yuri Chervonyi, Ian Davies, Cosmin Paduraru, Nevena Lazic, Federico Felici, Timo Ewalds, Craig Donner, Cristian Galperti, Jonas Buchli, Michael Neunert, Andrea Huber, Jonathan Evens, Paula Kurylowicz, Daniel J. Mankowitz, Martin Riedmiller, The TCV Team
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control.
1 code implementation • 2 May 2023 • Marius-Constantin Dinu, Markus Holzleitner, Maximilian Beck, Hoan Duc Nguyen, Andrea Huber, Hamid Eghbal-zadeh, Bernhard A. Moser, Sergei Pereverzyev, Sepp Hochreiter, Werner Zellinger
Our method outperforms deep embedded validation (DEV) and importance weighted validation (IWV) on all datasets, setting a new state-of-the-art performance for solving parameter choice issues in unsupervised domain adaptation with theoretical error guarantees.
no code implementations • 26 Apr 2023 • Tuomas Haarnoja, Ben Moran, Guy Lever, Sandy H. Huang, Dhruva Tirumala, Markus Wulfmeier, Jan Humplik, Saran Tunyasuvunakool, Noah Y. Siegel, Roland Hafner, Michael Bloesch, Kristian Hartikainen, Arunkumar Byravan, Leonard Hasenclever, Yuval Tassa, Fereshteh Sadeghi, Nathan Batchelor, Federico Casarini, Stefano Saliceti, Charles Game, Neil Sreendra, Kushal Patel, Marlon Gwira, Andrea Huber, Nicole Hurley, Francesco Nori, Raia Hadsell, Nicolas Heess
Although the robots are inherently fragile, minor hardware modifications together with basic regularization of the behavior during training led the robots to learn safe and effective movements while still performing in a dynamic and agile way.
no code implementations • 31 Mar 2022 • Steven Bohez, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland Hafner, Markus Wulfmeier, Michael Neunert, Ben Moran, Noah Siegel, Andrea Huber, Francesco Romano, Nathan Batchelor, Federico Casarini, Josh Merel, Raia Hadsell, Nicolas Heess
We investigate the use of prior knowledge of human and animal movement to learn reusable locomotion skills for real legged robots.
no code implementations • 9 Feb 2021 • Skanda Koppula, Victor Bapst, Marc Huertas-Company, Sam Blackwell, Agnieszka Grabska-Barwinska, Sander Dieleman, Andrea Huber, Natasha Antropova, Mikolaj Binkowski, Hannah Openshaw, Adria Recasens, Fernando Caro, Avishai Deke, Yohan Dubois, Jesus Vega Ferrero, David C. Koo, Joel R. Primack, Trevor Back
Fine-grained estimation of galaxy merger stages from observations is a key problem useful for validation of our current theoretical understanding of galaxy formation.