1 code implementation • 16 Feb 2022 • Aaron Babier, Rafid Mahmood, Binghao Zhang, Victor G. L. Alves, Ana Maria Barragán-Montero, Joel Beaudry, Carlos E. Cardenas, Yankui Chang, Zijie Chen, Jaehee Chun, Kelly Diaz, Harold David Eraso, Erik Faustmann, Sibaji Gaj, Skylar Gay, Mary Gronberg, Bingqi Guo, Junjun He, Gerd Heilemann, Sanchit Hira, Yuliang Huang, Fuxin Ji, Dashan Jiang, Jean Carlo Jimenez Giraldo, Hoyeon Lee, Jun Lian, Shuolin Liu, Keng-Chi Liu, José Marrugo, Kentaro Miki, Kunio Nakamura, Tucker Netherton, Dan Nguyen, Hamidreza Nourzadeh, Alexander F. I. Osman, Zhao Peng, José Darío Quinto Muñoz, Christian Ramsl, Dong Joo Rhee, Juan David Rodriguez, Hongming Shan, Jeffrey V. Siebers, Mumtaz H. Soomro, Kay Sun, Andrés Usuga Hoyos, Carlos Valderrama, Rob Verbeek, Enpei Wang, Siri Willems, Qi Wu, Xuanang Xu, Sen yang, Lulin Yuan, Simeng Zhu, Lukas Zimmermann, Kevin L. Moore, Thomas G. Purdie, Andrea L. McNiven, Timothy C. Y. Chan
The dose predictions were input to four optimization models to form 76 unique KBP pipelines that generated 7600 plans.
1 code implementation • 28 Nov 2020 • Aaron Babier, Binghao Zhang, Rafid Mahmood, Kevin L. Moore, Thomas G. Purdie, Andrea L. McNiven, Timothy C. Y. Chan
The purpose of this work is to advance fair and consistent comparisons of dose prediction methods for knowledge-based planning (KBP) in radiation therapy research.
no code implementations • 31 Oct 2019 • Aaron Babier, Rafid Mahmood, Andrea L. McNiven, Adam Diamant, Timothy C. Y. Chan
We determine how prediction methods combine with optimization methods in two-stage knowledge-based planning (KBP) pipelines to produce radiation therapy treatment plans.
1 code implementation • 21 Dec 2018 • Aaron Babier, Rafid Mahmood, Andrea L. McNiven, Adam Diamant, Timothy C. Y. Chan
Our pipeline consisted of a generative adversarial network (GAN) to predict dose from a CT image followed by two optimization models to learn objective function weights and generate fluence-based plans, respectively.
Medical Physics