1 code implementation • EMNLP 2020 • Fabio Massimo Zanzotto, Andrea Santilli, Leonardo Ranaldi, Dario Onorati, Pierfrancesco Tommasino, Francesca Fallucchi
Syntactic parsers have dominated natural language understanding for decades.
1 code implementation • ACL 2022 • Stephen H. Bach, Victor Sanh, Zheng-Xin Yong, Albert Webson, Colin Raffel, Nihal V. Nayak, Abheesht Sharma, Taewoon Kim, M Saiful Bari, Thibault Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli, Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan Chhablani, Han Wang, Jason Alan Fries, Maged S. Al-shaibani, Shanya Sharma, Urmish Thakker, Khalid Almubarak, Xiangru Tang, Dragomir Radev, Mike Tian-Jian Jiang, Alexander M. Rush
PromptSource is a system for creating, sharing, and using natural language prompts.
1 code implementation • 25 Jan 2022 • Antonio Norelli, Giorgio Mariani, Luca Moschella, Andrea Santilli, Giambattista Parascandolo, Simone Melzi, Emanuele Rodolà
We introduce Explanatory Learning (EL), a framework to let machines use existing knowledge buried in symbolic sequences -- e. g. explanations written in hieroglyphic -- by autonomously learning to interpret them.
3 code implementations • ICLR 2022 • Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas Wolf, Alexander M. Rush
Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020).
1 code implementation • 11 Oct 2021 • Michele Mancusi, Emilian Postolache, Giorgio Mariani, Marco Fumero, Andrea Santilli, Luca Cosmo, Emanuele Rodolà
State of the art audio source separation models rely on supervised data-driven approaches, which can be expensive in terms of labeling resources.
Ranked #1 on
Music Source Separation
on Slakh2100
1 code implementation • 28 Feb 2020 • Fabio Massimo Zanzotto, Viviana Bono, Paola Vocca, Andrea Santilli, Danilo Croce, Giorgio Gambosi, Roberto Basili
In this paper, we dare to introduce the novel, scientifically and philosophically challenging task of Generating Abstracts of Scientific Papers from abstracts of cited papers (GASP) as a text-to-text task to investigate scientific creativity, To foster research in this novel, challenging task, we prepared a dataset by using services where that solve the problem of copyright and, hence, the dataset is public available with its standard split.
no code implementations • SEMEVAL 2018 • Fabio Massimo Zanzotto, Andrea Santilli
In this paper, we present SyntNN as a way to include traditional syntactic models in multilayer neural networks used in the task of Semeval Task 2 of emoji prediction.