1 code implementation • 3 Feb 2025 • Miguel Bhagubai, Christos Chatzichristos, Lauren Swinnen, Jaiver Macea, Jingwei Zhang, Lieven Lagae, Katrien Jansen, Andreas Schulze-Bonhage, Francisco Sales, Benno Mahler, Yvonne Weber, Wim Van Paesschen, Maarten De Vos
The increasing technological advancements towards miniaturized physiological measuring devices have enabled continuous monitoring of epileptic patients outside of specialized environments.
no code implementations • 19 Mar 2024 • Jingwei Zhang, Lauren Swinnen, Christos Chatzichristos, Victoria Broux, Renee Proost, Katrien Jansen, Benno Mahler, Nicolas Zabler, Nino Epitashvilli, Matthias Dümpelmann, Andreas Schulze-Bonhage, Elisabeth Schriewer, Ummahan Ermis, Stefan Wolking, Florian Linke, Yvonne Weber, Mkael Symmonds, Arjune Sen, Andrea Biondi, Mark P. Richardson, Abuhaiba Sulaiman I, Ana Isabel Silva, Francisco Sales, Gergely Vértes, Wim Van Paesschen, Maarten De Vos
The combination of wearable EEG and EMG achieved overall the most clinically useful performance in offline TCS detection with a sensitivity of 97. 7%, a FPR of 0. 4/24 h, a precision of 43. 0%, and a F1-score of 59. 7%.
1 code implementation • 11 Feb 2020 • Lukas Alexander Wilhelm Gemein, Robin Tibor Schirrmeister, Patryk Chrabąszcz, Daniel Wilson, Joschka Boedecker, Andreas Schulze-Bonhage, Frank Hutter, Tonio Ball
The results demonstrate that the proposed feature-based decoding framework can achieve accuracies on the same level as state-of-the-art deep neural networks.
no code implementations • 12 Jun 2018 • Maria Hügle, Simon Heller, Manuel Watter, Manuel Blum, Farrokh Manzouri, Matthias Dümpelmann, Andreas Schulze-Bonhage, Peter Woias, Joschka Boedecker
Most approaches for early seizure detection in the literature are, however, not optimized for implementation on ultra-low power microcontrollers required for long-term implantation.
no code implementations • 4 May 2018 • Martin Völker, Jiří Hammer, Robin T. Schirrmeister, Joos Behncke, Lukas D. J. Fiederer, Andreas Schulze-Bonhage, Petr Marusič, Wolfram Burgard, Tonio Ball
Deep learning techniques have revolutionized the field of machine learning and were recently successfully applied to various classification problems in noninvasive electroencephalography (EEG).
no code implementations • Journal of Neuroscience Methods Volume 297 2018 • DanielLachner-Piza, Nino Epitashvili, Andreas Schulze-Bonhage, Thomas Stieglitz, Julia Jacobs, Matthias Dümpelmann
The classification of normalized EEG epochs in a multidimensional space, as well as the use of a validation set, allowed to objectively define a single detection threshold for all databases and participants.
Ranked #6 on
Spindle Detection
on MASS SS2