Search Results for author: Andrey Malevich

Found 9 papers, 5 papers with code

Proactive Detection and Calibration of Seasonal Advertisements with Multimodal Large Language Models

no code implementations16 Oct 2024 Hamid Eghbalzadeh, Shuai Shao, Saurabh Verma, Venugopal Mani, Hongnan Wang, Jigar Madia, Vitali Karpinchyk, Andrey Malevich

In this paper, we present Proactive Detection and Calibration of Seasonal Advertisements (PDCaSA), a research problem that is of interest for the ads ranking and recommendation community, both in the industrial setting as well as in research.

Knowledge Distillation

A Scalable and Effective Alternative to Graph Transformers

no code implementations17 Jun 2024 Kaan Sancak, Zhigang Hua, Jin Fang, Yan Xie, Andrey Malevich, Bo Long, Muhammed Fatih Balin, Ümit V. Çatalyürek

Further evaluations on diverse range of benchmarks showcase that GECO scales to large graphs where traditional GTs often face memory and time limitations.

Graph Learning Graph Representation Learning

VCR-Graphormer: A Mini-batch Graph Transformer via Virtual Connections

1 code implementation24 Mar 2024 Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui He, Bo Long

Therefore, mini-batch training for graph transformers is a promising direction, but limited samples in each mini-batch can not support effective dense attention to encode informative representations.

Feature Engineering Graph Learning

Decoupling the Depth and Scope of Graph Neural Networks

1 code implementation NeurIPS 2021 Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, Ren Chen

We propose a design principle to decouple the depth and scope of GNNs -- to generate representation of a target entity (i. e., a node or an edge), we first extract a localized subgraph as the bounded-size scope, and then apply a GNN of arbitrary depth on top of the subgraph.

Link Prediction Node Classification +1

Deep Graph Neural Networks with Shallow Subgraph Samplers

2 code implementations2 Dec 2020 Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, Ren Chen

We propose a simple "deep GNN, shallow sampler" design principle to improve both the GNN accuracy and efficiency -- to generate representation of a target node, we use a deep GNN to pass messages only within a shallow, localized subgraph.

Post-Training 4-bit Quantization on Embedding Tables

no code implementations5 Nov 2019 Hui Guan, Andrey Malevich, Jiyan Yang, Jongsoo Park, Hector Yuen

Continuous representations have been widely adopted in recommender systems where a large number of entities are represented using embedding vectors.

Quantization Recommendation Systems

Cannot find the paper you are looking for? You can Submit a new open access paper.