Search Results for author: Andrey Voynov

Found 16 papers, 11 papers with code

Imagen 3

2 code implementations13 Aug 2024 Imagen-Team-Google, :, Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Lluis Castrejon, Kelvin Chan, YiChang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, Hongliang Fei, Nando de Freitas, Yilin Gao, Evgeny Gladchenko, Sergio Gómez Colmenarejo, Mandy Guo, Alex Haig, Will Hawkins, Hexiang Hu, Huilian Huang, Tobenna Peter Igwe, Siavash Khodadadeh, Yelin Kim, Ksenia Konyushkova, Karol Langner, Eric Lau, Rory Lawton, Shixin Luo, Soňa Mokrá, Henna Nandwani, Yasumasa Onoe, Aäron van den Oord, Zarana Parekh, Jordi Pont-Tuset, Hang Qi, Rui Qian, Deepak Ramachandran, Poorva Rane, Abdullah Rashwan, Robert Riachi, Hansa Srinivasan, Srivatsan Srinivasan, Robin Strudel, Benigno Uria, Oliver Wang, Su Wang, Austin Waters, Chris Wolff, Auriel Wright, Zhisheng Xiao, Hao Xiong, Keyang Xu, Marc van Zee, Junlin Zhang, Katie Zhang, Wenlei Zhou, Konrad Zolna, Ola Aboubakar, Canfer Akbulut, Oscar Akerlund, Isabela Albuquerque, Nina Anderson, Marco Andreetto, Lora Aroyo, Ben Bariach, David Barker, Sherry Ben, Dana Berman, Courtney Biles, Irina Blok, Pankil Botadra, Jenny Brennan, Karla Brown, John Buckley, Rudy Bunel, Elie Bursztein, Christina Butterfield, Ben Caine, Viral Carpenter, Norman Casagrande, Ming-Wei Chang, Solomon Chang, Shamik Chaudhuri, Tony Chen, John Choi, Dmitry Churbanau, Nathan Clement, Matan Cohen, Forrester Cole, Mikhail Dektiarev, Vincent Du, Praneet Dutta, Tom Eccles, Ndidi Elue, Ashley Feden, Shlomi Fruchter, Frankie Garcia, Roopal Garg, Weina Ge, Ahmed Ghazy, Bryant Gipson, Andrew Goodman, Dawid Górny, Sven Gowal, Khyatti Gupta, Yoni Halpern, Yena Han, Susan Hao, Jamie Hayes, Jonathan Heek, Amir Hertz, Ed Hirst, Emiel Hoogeboom, Tingbo Hou, Heidi Howard, Mohamed Ibrahim, Dirichi Ike-Njoku, Joana Iljazi, Vlad Ionescu, William Isaac, Reena Jana, Gemma Jennings, Donovon Jenson, Xuhui Jia, Kerry Jones, Xiaoen Ju, Ivana Kajic, Christos Kaplanis, Burcu Karagol Ayan, Jacob Kelly, Suraj Kothawade, Christina Kouridi, Ira Ktena, Jolanda Kumakaw, Dana Kurniawan, Dmitry Lagun, Lily Lavitas, Jason Lee, Tao Li, Marco Liang, Maggie Li-Calis, Yuchi Liu, Javier Lopez Alberca, Matthieu Kim Lorrain, Peggy Lu, Kristian Lum, Yukun Ma, Chase Malik, John Mellor, Thomas Mensink, Inbar Mosseri, Tom Murray, Aida Nematzadeh, Paul Nicholas, Signe Nørly, João Gabriel Oliveira, Guillermo Ortiz-Jimenez, Michela Paganini, Tom Le Paine, Roni Paiss, Alicia Parrish, Anne Peckham, Vikas Peswani, Igor Petrovski, Tobias Pfaff, Alex Pirozhenko, Ryan Poplin, Utsav Prabhu, Yuan Qi, Matthew Rahtz, Cyrus Rashtchian, Charvi Rastogi, Amit Raul, Ali Razavi, Sylvestre-Alvise Rebuffi, Susanna Ricco, Felix Riedel, Dirk Robinson, Pankaj Rohatgi, Bill Rosgen, Sarah Rumbley, MoonKyung Ryu, Anthony Salgado, Tim Salimans, Sahil Singla, Florian Schroff, Candice Schumann, Tanmay Shah, Eleni Shaw, Gregory Shaw, Brendan Shillingford, Kaushik Shivakumar, Dennis Shtatnov, Zach Singer, Evgeny Sluzhaev, Valerii Sokolov, Thibault Sottiaux, Florian Stimberg, Brad Stone, David Stutz, Yu-Chuan Su, Eric Tabellion, Shuai Tang, David Tao, Kurt Thomas, Gregory Thornton, Andeep Toor, Cristian Udrescu, Aayush Upadhyay, Cristina Vasconcelos, Alex Vasiloff, Andrey Voynov, Amanda Walker, Luyu Wang, Miaosen Wang, Simon Wang, Stanley Wang, Qifei Wang, Yuxiao Wang, Ágoston Weisz, Olivia Wiles, Chenxia Wu, Xingyu Federico Xu, Andrew Xue, Jianbo Yang, Luo Yu, Mete Yurtoglu, Ali Zand, Han Zhang, Jiageng Zhang, Catherine Zhao, Adilet Zhaxybay, Miao Zhou, Shengqi Zhu, Zhenkai Zhu, Dawn Bloxwich, Mahyar Bordbar, Luis C. Cobo, Eli Collins, Shengyang Dai, Tulsee Doshi, Anca Dragan, Douglas Eck, Demis Hassabis, Sissie Hsiao, Tom Hume, Koray Kavukcuoglu, Helen King, Jack Krawczyk, Yeqing Li, Kathy Meier-Hellstern, Andras Orban, Yury Pinsky, Amar Subramanya, Oriol Vinyals, Ting Yu, Yori Zwols

We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts.

ReNoise: Real Image Inversion Through Iterative Noising

1 code implementation21 Mar 2024 Daniel Garibi, Or Patashnik, Andrey Voynov, Hadar Averbuch-Elor, Daniel Cohen-Or

However, applying these methods to real images necessitates the inversion of the images into the domain of the pretrained diffusion model.

Denoising Image Manipulation

Style Aligned Image Generation via Shared Attention

2 code implementations CVPR 2024 Amir Hertz, Andrey Voynov, Shlomi Fruchter, Daniel Cohen-Or

Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts.

Image Generation

Curved Diffusion: A Generative Model With Optical Geometry Control

no code implementations29 Nov 2023 Andrey Voynov, Amir Hertz, Moab Arar, Shlomi Fruchter, Daniel Cohen-Or

State-of-the-art diffusion models can generate highly realistic images based on various conditioning like text, segmentation, and depth.

Text Segmentation

Concept Decomposition for Visual Exploration and Inspiration

no code implementations29 May 2023 Yael Vinker, Andrey Voynov, Daniel Cohen-Or, Ariel Shamir

Each node in the tree represents a sub-concept using a learned vector embedding injected into the latent space of a pretrained text-to-image model.

P+: Extended Textual Conditioning in Text-to-Image Generation

1 code implementation16 Mar 2023 Andrey Voynov, Qinghao Chu, Daniel Cohen-Or, Kfir Aberman

Furthermore, we utilize the unique properties of this space to achieve previously unattainable results in object-style mixing using text-to-image models.

Denoising Text-to-Image Generation

Sketch-Guided Text-to-Image Diffusion Models

no code implementations24 Nov 2022 Andrey Voynov, Kfir Aberman, Daniel Cohen-Or

In this work, we introduce a universal approach to guide a pretrained text-to-image diffusion model, with a spatial map from another domain (e. g., sketch) during inference time.

Denoising Sketch-to-Image Translation

When, Why, and Which Pretrained GANs Are Useful?

1 code implementation ICLR 2022 Timofey Grigoryev, Andrey Voynov, Artem Babenko

The literature has proposed several methods to finetune pretrained GANs on new datasets, which typically results in higher performance compared to training from scratch, especially in the limited-data regime.

Label-Efficient Semantic Segmentation with Diffusion Models

1 code implementation ICLR 2022 Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, Artem Babenko

Denoising diffusion probabilistic models have recently received much research attention since they outperform alternative approaches, such as GANs, and currently provide state-of-the-art generative performance.

Denoising Segmentation +2

On Self-Supervised Image Representations for GAN Evaluation

no code implementations ICLR 2021 Stanislav Morozov, Andrey Voynov, Artem Babenko

The embeddings from CNNs pretrained on Imagenet classification are de-facto standard image representations for assessing GANs via FID, Precision and Recall measures.

Contrastive Learning General Classification

Navigating the GAN Parameter Space for Semantic Image Editing

2 code implementations CVPR 2021 Anton Cherepkov, Andrey Voynov, Artem Babenko

In contrast to existing works, which mostly operate by latent codes, we discover interpretable directions in the space of the generator parameters.

Image Restoration Image-to-Image Translation +1

Object Segmentation Without Labels with Large-Scale Generative Models

1 code implementation8 Jun 2020 Andrey Voynov, Stanislav Morozov, Artem Babenko

The recent rise of unsupervised and self-supervised learning has dramatically reduced the dependency on labeled data, providing effective image representations for transfer to downstream vision tasks.

Image Classification Object +5

RPGAN: GANs Interpretability via Random Routing

1 code implementation23 Dec 2019 Andrey Voynov, Artem Babenko

In this paper, we introduce Random Path Generative Adversarial Network (RPGAN) -- an alternative design of GANs that can serve as a tool for generative model analysis.

Generative Adversarial Network Image Generation +1

RPGAN: random paths as a latent space for GAN interpretability

1 code implementation25 Sep 2019 Andrey Voynov, Artem Babenko

In this paper, we introduce Random Path Generative Adversarial Network (RPGAN) --- an alternative scheme of GANs that can serve as a tool for generative model analysis.

Generative Adversarial Network Image Generation +1

Cannot find the paper you are looking for? You can Submit a new open access paper.