2 code implementations • 10 Aug 2024 • Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang, Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, Yingda Chen
With support of over $300+$ LLMs and $50+$ MLLMs, SWIFT stands as the open-source framework that provide the most comprehensive support for fine-tuning large models.
no code implementations • 30 Oct 2023 • Huiyao Shu, Ang Wang, Ziji Shi, Hanyu Zhao, Yong Li, Lu Lu
However, a memory-efficient execution plan that includes a reasonable operator execution order and tensor memory layout can significantly increase the models' memory efficiency and reduce overheads from high-level techniques.
no code implementations • 1 Feb 2023 • Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Xianyan Jia, Yong Li, Chencan Wu, Jialin Li, Wei Lin
However, finding a suitable model parallel schedule for an arbitrary neural network is a non-trivial task due to the exploding search space.
1 code implementation • 11 Oct 2022 • Taolin Zhang, Junwei DOng, Jianing Wang, Chengyu Wang, Ang Wang, Yinghui Liu, Jun Huang, Yong Li, Xiaofeng He
Recently, knowledge-enhanced pre-trained language models (KEPLMs) improve context-aware representations via learning from structured relations in knowledge graphs, and/or linguistic knowledge from syntactic or dependency analysis.
no code implementations • 8 Oct 2021 • Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang, Yong Li, Wei Lin, Jingren Zhou, Hongxia Yang
Recent expeditious developments in deep learning algorithms, distributed training, and even hardware design for large models have enabled training extreme-scale models, say GPT-3 and Switch Transformer possessing hundreds of billions or even trillions of parameters.
no code implementations • 31 May 2021 • An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang, Xianyan Jia, Ang Wang, Jie Zhang, Jiamang Wang, Yong Li, Di Zhang, Wei Lin, Lin Qu, Jingren Zhou, Hongxia Yang
Mixture-of-Experts (MoE) models can achieve promising results with outrageous large amount of parameters but constant computation cost, and thus it has become a trend in model scaling.
no code implementations • 1 Mar 2021 • Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming Ding, Yichang Zhang, Peng Wang, Ang Wang, Le Jiang, Xianyan Jia, Jie Zhang, Jianwei Zhang, Xu Zou, Zhikang Li, Xiaodong Deng, Jie Liu, Jinbao Xue, Huiling Zhou, Jianxin Ma, Jin Yu, Yong Li, Wei Lin, Jingren Zhou, Jie Tang, Hongxia Yang
In this work, we construct the largest dataset for multimodal pretraining in Chinese, which consists of over 1. 9TB images and 292GB texts that cover a wide range of domains.
2 code implementations • 18 Nov 2020 • Minghui Qiu, Peng Li, Chengyu Wang, Hanjie Pan, Ang Wang, Cen Chen, Xianyan Jia, Yaliang Li, Jun Huang, Deng Cai, Wei Lin
The literature has witnessed the success of leveraging Pre-trained Language Models (PLMs) and Transfer Learning (TL) algorithms to a wide range of Natural Language Processing (NLP) applications, yet it is not easy to build an easy-to-use and scalable TL toolkit for this purpose.