no code implementations • 1 Feb 2023 • Chun-Wun Cheng, Christina Runkel, Lihao Liu, Raymond H Chan, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
Despite the powerful performance reported by existing U-Net type networks, they suffer from several major limitations.
no code implementations • 17 Nov 2022 • Zhongying Deng, Rihuan Ke, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero
Semi-Supervised Learning (SSL) aims to learn a model using a tiny labeled set and massive amounts of unlabeled data.
no code implementations • 17 Nov 2022 • Zhongying Deng, Yanqi Chen, Lihao Liu, Shujun Wang, Rihuan Ke, Carola-Bibiane Schonlieb, Angelica I Aviles-Rivero
Firstly, TrafficCAM provides both pixel-level and instance-level semantic labelling along with a large range of types of vehicles and pedestrians.
no code implementations • 13 Nov 2022 • Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero
Shadows in videos are difficult to detect because of the large shadow deformation between frames.
no code implementations • 20 Jan 2021 • Tao Wei, Angelica I Aviles-Rivero, Shuo Wang, Yuan Huang, Fiona J Gilbert, Carola-Bibiane Schönlieb, Chang Wen Chen
The current state-of-the-art approaches for medical image classification rely on using the de-facto method for ConvNets - fine-tuning.
1 code implementation • 17 Nov 2020 • Lihao Liu, Angelica I Aviles-Rivero, Carola-Bibiane Schönlieb
Secondly, we embed a contrastive learning mechanism into the registration architecture to enhance the discriminating capacity of the network in the feature-level.