no code implementations • 19 Oct 2022 • Szilvia Ujváry, Zsigmond Telek, Anna Kerekes, Anna Mészáros, Ferenc Huszár
Sharpness-aware minimization (SAM) aims to improve the generalisation of gradient-based learning by seeking out flat minima.
no code implementations • 22 Nov 2021 • Anna Kerekes, Anna Mészáros, Ferenc Huszár
In gradient descent, changing how we parametrize the model can lead to drastically different optimization trajectories, giving rise to a surprising range of meaningful inductive biases: identifying sparse classifiers or reconstructing low-rank matrices without explicit regularization.
no code implementations • 9 Oct 2021 • Anna Mészáros, Giovanni Franzese, Jens Kober
This work investigates how the intricate task of a continuous pick & place (P&P) motion may be learned from humans based on demonstrations and corrections.
1 code implementation • 4 Mar 2021 • Giovanni Franzese, Anna Mészáros, Luka Peternel, Jens Kober
Teaching robots how to apply forces according to our preferences is still an open challenge that has to be tackled from multiple engineering perspectives.