no code implementations • 10 Jul 2022 • Kunal Dahiya, Nilesh Gupta, Deepak Saini, Akshay Soni, Yajun Wang, Kushal Dave, Jian Jiao, Gururaj K, Prasenjit Dey, Amit Singh, Deepesh Hada, Vidit Jain, Bhawna Paliwal, Anshul Mittal, Sonu Mehta, Ramachandran Ramjee, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper identifies that memory overheads of popular negative mining techniques often force mini-batch sizes to remain small and slow training down.
no code implementations • CVPR 2022 • Anshul Mittal, Kunal Dahiya, Shreya Malani, Janani Ramaswamy, Seba Kuruvilla, Jitendra Ajmera, Keng-hao Chang, Sumeet Agarwal, Purushottam Kar, Manik Varma
On the other hand, XC methods utilize classifier architectures to offer superior accuracies than embedding-only methods but mostly focus on text-based categorization tasks.
1 code implementation • 12 Nov 2021 • Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush Shaw, Kushal Dave, Akshay Soni, Himanshu Jain, Sumeet Agarwal, Manik Varma
Scalability and accuracy are well recognized challenges in deep extreme multi-label learning where the objective is to train architectures for automatically annotating a data point with the most relevant subset of labels from an extremely large label set.
1 code implementation • 1 Aug 2021 • Anshul Mittal, Kunal Dahiya, Sheshansh Agrawal, Deepak Saini, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper develops the DECAF algorithm that addresses these challenges by learning models enriched by label metadata that jointly learn model parameters and feature representations using deep networks and offer accurate classification at the scale of millions of labels.
1 code implementation • 31 Jul 2021 • Anshul Mittal, Noveen Sachdeva, Sheshansh Agrawal, Sumeet Agarwal, Purushottam Kar, Manik Varma
This paper presents ECLARE, a scalable deep learning architecture that incorporates not only label text, but also label correlations, to offer accurate real-time predictions within a few milliseconds.
no code implementations • 25 Sep 2019 • Kunal Dahiya, Anshul Mittal, Deepak Saini, Kushal Dave, Himanshu Jain, Sumeet Agarwal, Manik Varma
The objective in deep extreme multi-label learning is to jointly learn feature representations and classifiers to automatically tag data points with the most relevant subset of labels from an extremely large label set.