no code implementations • BigScience (ACL) 2022 • Nicolas Hervé, Valentin Pelloin, Benoit Favre, Franck Dary, Antoine Laurent, Sylvain Meignier, Laurent Besacier
This papers aims at improving spoken language modeling (LM) using very large amount of automatically transcribed speech.
no code implementations • LREC 2022 • Martin Lebourdais, Marie Tahon, Antoine Laurent, Sylvain Meignier, Anthony Larcher
Our main goal is to study the interactions between speakers according to their gender and role in broadcast media.
no code implementations • LREC 2022 • Rémi Uro, David Doukhan, Albert Rilliard, Laetitia Larcher, Anissa-Claire Adgharouamane, Marie Tahon, Antoine Laurent
It shows the automatic processing compare to up-to-date process, and that the output provides high quality speech for most of the selected excerpts.
no code implementations • 14 Nov 2022 • Nauman Dawalatabad, Sameer Khurana, Antoine Laurent, James Glass
Dropout-based Uncertainty-driven Self-Training (DUST) proceeds by first training a teacher model on source domain labeled data.
no code implementations • 9 Sep 2022 • Martin Lebourdais, Marie Tahon, Antoine Laurent, Sylvain Meignier
This article focuses on overlapped speech and gender detection in order to study interactions between women and men in French audiovisual media (Gender Equality Monitoring project).
no code implementations • 5 Jul 2022 • Valentin Pelloin, Franck Dary, Nicolas Herve, Benoit Favre, Nathalie Camelin, Antoine Laurent, Laurent Besacier
We aim at improving spoken language modeling (LM) using very large amount of automatically transcribed speech.
no code implementations • 17 May 2022 • Sameer Khurana, Antoine Laurent, James Glass
We combine state-of-the-art multilingual acoustic frame-level speech representation learning model XLS-R with the Language Agnostic BERT Sentence Embedding (LaBSE) model to create an utterance-level multimodal multilingual speech encoder SAMU-XLSR.
no code implementations • IWSLT (ACL) 2022 • Marcely Zanon Boito, John Ortega, Hugo Riguidel, Antoine Laurent, Loïc Barrault, Fethi Bougares, Firas Chaabani, Ha Nguyen, Florentin Barbier, Souhir Gahbiche, Yannick Estève
This paper describes the ON-TRAC Consortium translation systems developed for two challenge tracks featured in the Evaluation Campaign of IWSLT 2022: low-resource and dialect speech translation.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+4
no code implementations • 7 Oct 2021 • Sameer Khurana, Antoine Laurent, James Glass
We propose a simple and effective cross-lingual transfer learning method to adapt monolingual wav2vec-2. 0 models for Automatic Speech Recognition (ASR) in resource-scarce languages.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+3
2 code implementations • 8 Apr 2021 • Hervé Bredin, Antoine Laurent
Experiments on multiple speaker diarization datasets conclude that our model can be used with great success on both voice activity detection and overlapped speech detection.
no code implementations • 1 Feb 2021 • Valentin Pelloin, Nathalie Camelin, Antoine Laurent, Renato de Mori, Antoine Caubrière, Yannick Estève, Sylvain Meignier
In this paper, we propose a novel end-to-end sequence-to-sequence spoken language understanding model using an attention mechanism.
no code implementations • 4 Jun 2020 • Sameer Khurana, Antoine Laurent, James Glass
The audio encoder is trained to perform a speech-translation retrieval task in a contrastive learning framework.
no code implementations • 3 Jun 2020 • Sameer Khurana, Antoine Laurent, Wei-Ning Hsu, Jan Chorowski, Adrian Lancucki, Ricard Marxer, James Glass
Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech.
no code implementations • JEPTALNRECITAL 2020 • Antoine Caubri{\`e}re, Sophie Rosset, Yannick Est{\`e}ve, Antoine Laurent, Emmanuel Morin
Les derni{\`e}res donn{\'e}es disponibles pour la REN structur{\'e}es {\`a} partir de la parole en fran{\c{c}}ais proviennent de la campagne d{'}{\'e}valuation ETAPE en 2012.
1 code implementation • 18 May 2020 • Adrian Łańcucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans J. G. A. Dolfing, Sameer Khurana, Tanel Alumäe, Antoine Laurent
We show that the codebook learning can suffer from poor initialization and non-stationarity of clustered encoder outputs.
no code implementations • LREC 2020 • Antoine Caubri{\`e}re, Sophie Rosset, Yannick Est{\`e}ve, Antoine Laurent, Emmanuel Morin
For this type of systems, we propose an original 3-pass approach.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • LREC 2020 • Salima Mdhaffar, Yannick Est{\`e}ve, Antoine Laurent, Hern, Nicolas ez, Richard Dufour, Delphine Charlet, Geraldine Damnati, Solen Quiniou, Nathalie Camelin
The use cases concern scientific fields from both speech and text processing, with language model adaptation, thematic segmentation and transcription to slide alignment.
no code implementations • 29 Sep 2019 • Natalia Tomashenko, Antoine Caubriere, Yannick Esteve, Antoine Laurent, Emmanuel Morin
This work investigates spoken language understanding (SLU) systems in the scenario when the semantic information is extracted directly from the speech signal by means of a single end-to-end neural network model.
no code implementations • JEPTALNRECITAL 2019 • Antoine Caubri{\`e}re, Natalia Tomashenko, Yannick Est{\`e}ve, Antoine Laurent, Emmanuel Morin
Les r{\'e}sultats montrent un int{\'e}r{\^e}t {\`a} l{'}utilisation des donn{\'e}es d{'}entit{\'e}s nomm{\'e}es, permettant un gain relatif allant jusqu{'}{\`a} 6, 5 {\%}.
no code implementations • JEPTALNRECITAL 2019 • Salima Mdhaffar, Yannick Est{\`e}ve, Hern, Nicolas ez, Antoine Laurent, Solen Quiniou
Les transcriptions automatiques de ces syst{\`e}mes sont de plus en plus exploitables et utilis{\'e}es dans des syst{\`e}mes complexes de traitement automatique du langage naturel, par exemple pour la traduction automatique, l{'}indexation, la recherche documentaire... Des {\'e}tudes r{\'e}centes ont propos{\'e} des m{\'e}triques permettant de comparer la qualit{\'e} des transcriptions automatiques de diff{\'e}rents syst{\`e}mes en fonction de la t{\^a}che vis{\'e}e. Dans cette {\'e}tude nous souhaitons mesurer, qualitativement, l{'}apport de l{'}adaptation automatique des mod{\`e}les de langage au domaine vis{\'e} par un cours magistral.
no code implementations • 18 Jun 2019 • Antoine Caubrière, Natalia Tomashenko, Antoine Laurent, Emmanuel Morin, Nathalie Camelin, Yannick Estève
We present an end-to-end approach to extract semantic concepts directly from the speech audio signal.
no code implementations • 30 May 2018 • Sahar Ghannay, Antoine Caubrière, Yannick Estève, Antoine Laurent, Emmanuel Morin
Until now, NER from speech is made through a pipeline process that consists in processing first an automatic speech recognition (ASR) on the audio and then processing a NER on the ASR outputs.
Automatic Speech Recognition
Automatic Speech Recognition (ASR)
+5
no code implementations • JEPTALNRECITAL 2018 • Salima Mdhaffar, Antoine Laurent, Yannick Est{\`e}ve
Cet enrichissement s{'}appuie sur des traitements automatiques du langage naturel effectu{\'e}s sur les transcriptions automatiques.