no code implementations • 12 Feb 2025 • Kaelan Donatella, Samuel Duffield, Denis Melanson, Maxwell Aifer, Phoebe Klett, Rajath Salegame, Zach Belateche, Gavin Crooks, Antonio J. Martinez, Patrick J. Coles
Many hardware proposals have aimed to accelerate inference in AI workloads.
no code implementations • 2 Oct 2024 • Maxwell Aifer, Samuel Duffield, Kaelan Donatella, Denis Melanson, Phoebe Klett, Zach Belateche, Gavin Crooks, Antonio J. Martinez, Patrick J. Coles
Thermodynamic computing has emerged as a paradigm for accelerating operations used in machine learning, such as matrix inversion, and is based on the mapping of Langevin equations to the dynamics of noisy physical systems.
no code implementations • 8 Dec 2023 • Denis Melanson, Mohammad Abu Khater, Maxwell Aifer, Kaelan Donatella, Max Hunter Gordon, Thomas Ahle, Gavin Crooks, Antonio J. Martinez, Faris Sbahi, Patrick J. Coles
Recent breakthroughs in artificial intelligence (AI) algorithms have highlighted the need for novel computing hardware in order to truly unlock the potential for AI.
no code implementations • 9 Feb 2023 • Patrick J. Coles, Collin Szczepanski, Denis Melanson, Kaelan Donatella, Antonio J. Martinez, Faris Sbahi
Hence, we propose a novel computing paradigm, where software and hardware become inseparable.
4 code implementations • 6 Mar 2020 • Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon Yoo, Sergei V. Isakov, Philip Massey, Ramin Halavati, Murphy Yuezhen Niu, Alexander Zlokapa, Evan Peters, Owen Lockwood, Andrea Skolik, Sofiene Jerbi, Vedran Dunjko, Martin Leib, Michael Streif, David Von Dollen, Hongxiang Chen, Shuxiang Cao, Roeland Wiersema, Hsin-Yuan Huang, Jarrod R. McClean, Ryan Babbush, Sergio Boixo, Dave Bacon, Alan K. Ho, Hartmut Neven, Masoud Mohseni
We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.