1 code implementation • 20 Dec 2024 • Jun Ma, Feifei Li, Sumin Kim, Reza Asakereh, Bao-Hiep Le, Dang-Khoa Nguyen-Vu, Alexander Pfefferle, Muxin Wei, Ruochen Gao, Donghang Lyu, Songxiao Yang, Lennart Purucker, Zdravko Marinov, Marius Staring, Haisheng Lu, Thuy Thanh Dao, Xincheng Ye, Zhi Li, Gianluca Brugnara, Philipp Vollmuth, Martha Foltyn-Dumitru, Jaeyoung Cho, Mustafa Ahmed Mahmutoglu, Martin Bendszus, Irada Pflüger, Aditya Rastogi, Dong Ni, Xin Yang, Guang-Quan Zhou, Kaini Wang, Nicholas Heller, Nikolaos Papanikolopoulos, Christopher Weight, Yubing Tong, Jayaram K Udupa, Cahill J. Patrick, Yaqi Wang, Yifan Zhang, Francisco Contijoch, Elliot McVeigh, Xin Ye, Shucheng He, Robert Haase, Thomas Pinetz, Alexander Radbruch, Inga Krause, Erich Kobler, Jian He, Yucheng Tang, Haichun Yang, Yuankai Huo, Gongning Luo, Kaisar Kushibar, Jandos Amankulov, Dias Toleshbayev, Amangeldi Mukhamejan, Jan Egger, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Shohei Fujita, Tomohiro Kikuchi, Benedikt Wiestler, Jan S. Kirschke, Ezequiel de la Rosa, Federico Bolelli, Luca Lumetti, Costantino Grana, Kunpeng Xie, Guomin Wu, Behrus Puladi, Carlos Martín-Isla, Karim Lekadir, Victor M. Campello, Wei Shao, Wayne Brisbane, Hongxu Jiang, Hao Wei, Wu Yuan, Shuangle Li, Yuyin Zhou, Bo wang
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice.
no code implementations • 18 Mar 2024 • Antonio Pepe, Richard Schussnig, Jianning Li, Christina Gsaxner, Dieter Schmalstieg, Jan Egger
Shape reconstruction from imaging volumes is a recurring need in medical image analysis.
1 code implementation • 10 Sep 2023 • Jianning Li, Antonio Pepe, Gijs Luijten, Christina Schwarz-Gsaxner, Jens Kleesiek, Jan Egger
We propose two paradigms based on a 3D denoising auto-encoder (DAE) to solve the anatomy reconstruction problem: (i) the DAE learns a many-to-one mapping between incomplete and complete instances; (ii) the DAE learns directly a one-to-one residual mapping between the incomplete instances and the target anatomies.
1 code implementation • 30 Aug 2023 • Jianning Li, Zongwei Zhou, Jiancheng Yang, Antonio Pepe, Christina Gsaxner, Gijs Luijten, Chongyu Qu, Tiezheng Zhang, Xiaoxi Chen, Wenxuan Li, Marek Wodzinski, Paul Friedrich, Kangxian Xie, Yuan Jin, Narmada Ambigapathy, Enrico Nasca, Naida Solak, Gian Marco Melito, Viet Duc Vu, Afaque R. Memon, Christopher Schlachta, Sandrine de Ribaupierre, Rajnikant Patel, Roy Eagleson, Xiaojun Chen, Heinrich Mächler, Jan Stefan Kirschke, Ezequiel de la Rosa, Patrick Ferdinand Christ, Hongwei Bran Li, David G. Ellis, Michele R. Aizenberg, Sergios Gatidis, Thomas Küstner, Nadya Shusharina, Nicholas Heller, Vincent Andrearczyk, Adrien Depeursinge, Mathieu Hatt, Anjany Sekuboyina, Maximilian Löffler, Hans Liebl, Reuben Dorent, Tom Vercauteren, Jonathan Shapey, Aaron Kujawa, Stefan Cornelissen, Patrick Langenhuizen, Achraf Ben-Hamadou, Ahmed Rekik, Sergi Pujades, Edmond Boyer, Federico Bolelli, Costantino Grana, Luca Lumetti, Hamidreza Salehi, Jun Ma, Yao Zhang, Ramtin Gharleghi, Susann Beier, Arcot Sowmya, Eduardo A. Garza-Villarreal, Thania Balducci, Diego Angeles-Valdez, Roberto Souza, Leticia Rittner, Richard Frayne, Yuanfeng Ji, Vincenzo Ferrari, Soumick Chatterjee, Florian Dubost, Stefanie Schreiber, Hendrik Mattern, Oliver Speck, Daniel Haehn, Christoph John, Andreas Nürnberger, João Pedrosa, Carlos Ferreira, Guilherme Aresta, António Cunha, Aurélio Campilho, Yannick Suter, Jose Garcia, Alain Lalande, Vicky Vandenbossche, Aline Van Oevelen, Kate Duquesne, Hamza Mekhzoum, Jef Vandemeulebroucke, Emmanuel Audenaert, Claudia Krebs, Timo Van Leeuwen, Evie Vereecke, Hauke Heidemeyer, Rainer Röhrig, Frank Hölzle, Vahid Badeli, Kathrin Krieger, Matthias Gunzer, Jianxu Chen, Timo van Meegdenburg, Amin Dada, Miriam Balzer, Jana Fragemann, Frederic Jonske, Moritz Rempe, Stanislav Malorodov, Fin H. Bahnsen, Constantin Seibold, Alexander Jaus, Zdravko Marinov, Paul F. Jaeger, Rainer Stiefelhagen, Ana Sofia Santos, Mariana Lindo, André Ferreira, Victor Alves, Michael Kamp, Amr Abourayya, Felix Nensa, Fabian Hörst, Alexander Brehmer, Lukas Heine, Yannik Hanusrichter, Martin Weßling, Marcel Dudda, Lars E. Podleska, Matthias A. Fink, Julius Keyl, Konstantinos Tserpes, Moon-Sung Kim, Shireen Elhabian, Hans Lamecker, Dženan Zukić, Beatriz Paniagua, Christian Wachinger, Martin Urschler, Luc Duong, Jakob Wasserthal, Peter F. Hoyer, Oliver Basu, Thomas Maal, Max J. H. Witjes, Gregor Schiele, Ti-chiun Chang, Seyed-Ahmad Ahmadi, Ping Luo, Bjoern Menze, Mauricio Reyes, Thomas M. Deserno, Christos Davatzikos, Behrus Puladi, Pascal Fua, Alan L. Yuille, Jens Kleesiek, Jan Egger
For the medical domain, we present a large collection of anatomical shapes (e. g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems.
no code implementations • 6 Sep 2022 • Christina Gsaxner, Jianning Li, Antonio Pepe, Yuan Jin, Jens Kleesiek, Dieter Schmalstieg, Jan Egger
The HoloLens (Microsoft Corp., Redmond, WA), a head-worn, optically see-through augmented reality display, is the main player in the recent boost in medical augmented reality research.
1 code implementation • 12 Apr 2022 • Jianning Li, David G. Ellis, Antonio Pepe, Christina Gsaxner, Michele R. Aizenberg, Jens Kleesiek, Jan Egger
We evaluate the SSM on several cranial implant design tasks, and the results show that, while the SSM performs suboptimally on synthetic defects compared to CNN-based approaches, it is capable of reconstructing large and complex defects with only minor manual corrections.
no code implementations • 21 Feb 2022 • Sascha Ranftl, Malte Rolf-Pissarczyk, Gloria Wolkerstorfer, Antonio Pepe, Jan Egger, Wolfgang von der Linden, Gerhard A. Holzapfel
Then to assess the uncertainty in the output stress distribution due to this stochastic constitutive model, a convolutional neural network, specifically a Bayesian encoder-decoder, was used as a surrogate model that maps the random input fields to the output stress distribution obtained from the FE analysis.
no code implementations • 22 Nov 2021 • Antonio Pepe, Jan Egger, Marina Codari, Martin J. Willemink, Christina Gsaxner, Jianning Li, Peter M. Roth, Gabriel Mistelbauer, Dieter Schmalstieg, Dominik Fleischmann
Conclusion: This suggests that pre-existing annotations can be an inexpensive resource in clinics to ease ill-posed and repetitive tasks like cross-section extraction for surveillance of aortic dissections.
1 code implementation • 11 Aug 2021 • Jianning Li, Antonio Pepe, Christina Gsaxner, Yuan Jin, Jan Egger
However, downsampling can lead to a loss of image quality, which is undesirable especially in reconstruction tasks, where the fine geometric details need to be preserved.
no code implementations • 6 Aug 2021 • Yuan Jin, Antonio Pepe, Jianning Li, Christina Gsaxner, Fen-hua Zhao, Kelsey L. Pomykala, Jens Kleesiek, Alejandro F. Frangi, Jan Egger
The standard imaging modality for diagnosis and monitoring is computed tomography (CT), which can provide a detailed picture of the aorta and its branching vessels if completed with a contrast agent, called CT angiography (CTA).
no code implementations • 16 Nov 2020 • Jan Egger, Antonio Pepe, Christina Gsaxner, Yuan Jin, Jianning Li, Roman Kern
These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years.
no code implementations • 28 Oct 2020 • Jan Egger, Christina Gsaxner, Antonio Pepe, Kelsey L. Pomykala, Frederic Jonske, Manuel Kurz, Jianning Li, Jens Kleesiek
With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information.
1 code implementation • 22 Jun 2020 • Jianning Li, Antonio Pepe, Christina Gsaxner, Gord von Campe, Jan Egger
The approach generates high-quality implants in two steps: First, an encoder-decoder network learns a coarse representation of the implant from down-sampled, defective skulls; The coarse implant is only used to generate the bounding box of the defected region in the original high-resolution skull.
no code implementations • 1 Jun 2020 • Jianning Li, Antonio Pepe, Christina Gsaxner, Jan Egger
Such an automatic cranial implant design system can be integrated into the clinical practice to improve the current routine for surgeries related to skull defect repair (e. g., cranioplasty).
no code implementations • 6 May 2020 • Alexander Prutsch, Antonio Pepe, Jan Egger
Medical imaging is an important tool for the diagnosis and the evaluation of an aortic dissection (AD); a serious condition of the aorta, which could lead to a life-threatening aortic rupture.