Search Results for author: Antonio de Marvao

Found 16 papers, 6 papers with code

CHeart: A Conditional Spatio-Temporal Generative Model for Cardiac Anatomy

1 code implementation30 Jan 2023 Mengyun Qiao, Shuo Wang, Huaqi Qiu, Antonio de Marvao, Declan P. O'Regan, Daniel Rueckert, Wenjia Bai

Two key questions in cardiac image analysis are to assess the anatomy and motion of the heart from images; and to understand how they are associated with non-imaging clinical factors such as gender, age and diseases.

Anatomy Image Segmentation +1

MulViMotion: Shape-aware 3D Myocardial Motion Tracking from Multi-View Cardiac MRI

no code implementations29 Jul 2022 Qingjie Meng, Chen Qin, Wenjia Bai, Tianrui Liu, Antonio de Marvao, Declan P O'Regan, Daniel Rueckert

To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart.

Motion Estimation

Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration

no code implementations26 Sep 2021 Alexander Thorley, Xi Jia, Hyung Jin Chang, Boyang Liu, Karina Bunting, Victoria Stoll, Antonio de Marvao, Declan P. O'Regan, Georgios Gkoutos, Dipak Kotecha, Jinming Duan

Recent developments in stochastic approaches based on deep learning have achieved sub-second runtimes for DiffIR with competitive registration accuracy, offering a fast alternative to conventional iterative methods.

Image Registration

Learning a Model-Driven Variational Network for Deformable Image Registration

no code implementations25 May 2021 Xi Jia, Alexander Thorley, Wei Chen, Huaqi Qiu, Linlin Shen, Iain B Styles, Hyung Jin Chang, Ales Leonardis, Antonio de Marvao, Declan P. O'Regan, Daniel Rueckert, Jinming Duan

We then propose two neural layers (i. e. warping layer and intensity consistency layer) to model the analytical solution and a residual U-Net to formulate the denoising problem (i. e. generalized denoising layer).

Denoising Image Registration

Joint analysis of clinical risk factors and 4D cardiac motion for survival prediction using a hybrid deep learning network

no code implementations7 Oct 2019 Shihao Jin, Nicolò Savioli, Antonio de Marvao, Timothy JW Dawes, Axel Gandy, Daniel Rueckert, Declan P. O'Regan

In this work, a novel approach is proposed for joint analysis of high dimensional time-resolved cardiac motion features obtained from segmented cardiac MRI and low dimensional clinical risk factors to improve survival prediction in heart failure.

Survival Prediction

Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models

1 code implementation28 Jun 2019 Carlo Biffi, Juan J. Cerrolaza, Giacomo Tarroni, Wenjia Bai, Antonio de Marvao, Ozan Oktay, Christian Ledig, Loic Le Folgoc, Konstantinos Kamnitsas, Georgia Doumou, Jinming Duan, Sanjay K. Prasad, Stuart A. Cook, Declan P. O'Regan, Daniel Rueckert

At the highest level of this hierarchy, a two-dimensional latent space is simultaneously optimised to discriminate distinct clinical conditions, enabling the direct visualisation of the classification space.


A Comprehensive Approach for Learning-based Fully-Automated Inter-slice Motion Correction for Short-Axis Cine Cardiac MR Image Stacks

no code implementations3 Oct 2018 Giacomo Tarroni, Ozan Oktay, Matthew Sinclair, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, Antonio de Marvao, Declan O'Regan, Stuart Cook, Daniel Rueckert

If long axis (LA) images are available, PSMs are generated for them and combined to create the target PSM; if not, the target PSM is produced from the same stack using a 3D model trained from motion-free stacks.

Motion Compensation

Learning-Based Quality Control for Cardiac MR Images

no code implementations25 Mar 2018 Giacomo Tarroni, Ozan Oktay, Wenjia Bai, Andreas Schuh, Hideaki Suzuki, Jonathan Passerat-Palmbach, Antonio de Marvao, Declan P. O'Regan, Stuart Cook, Ben Glocker, Paul M. Matthews, Daniel Rueckert

The results show the capability of the proposed pipeline to correctly detect incomplete or corrupted scans (e. g. on UK Biobank, sensitivity and specificity respectively 88% and 99% for heart coverage estimation, 85% and 95% for motion detection), allowing their exclusion from the analysed dataset or the triggering of a new acquisition.

Motion Detection Specificity

Cannot find the paper you are looking for? You can Submit a new open access paper.