no code implementations • 28 Jan 2022 • Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi
Certified robustness in machine learning has primarily focused on adversarial perturbations of the input with a fixed attack budget for each point in the data distribution.
no code implementations • ICLR 2022 • Aounon Kumar, Alexander Levine, Soheil Feizi
Prior works in provable robustness in RL seek to certify the behaviour of the victim policy at every time-step against a non-adaptive adversary using methods developed for the static setting.
1 code implementation • NeurIPS 2021 • Aounon Kumar, Tom Goldstein
We extend the scope of certifiable robustness to problems with more general and structured outputs like sets, images, language, etc.
no code implementations • NeurIPS 2020 • Ping-Yeh Chiang, Michael Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, Tom Goldstein
Despite the vulnerability of object detectors to adversarial attacks, very few defenses are known to date.
1 code implementation • 20 Oct 2020 • Alexander Levine, Aounon Kumar, Thomas Goldstein, Soheil Feizi
In this work, we show that there also exists a universal curvature-like bound for Gaussian random smoothing: given the exact value and gradient of a smoothed function, we compute a lower bound on the distance of a point to its closest adversarial example, called the Second-order Smoothing (SoS) robustness certificate.
no code implementations • NeurIPS 2020 • Aounon Kumar, Alexander Levine, Soheil Feizi, Tom Goldstein
It uses the probabilities of predicting the top two most-likely classes around an input point under a smoothing distribution to generate a certified radius for a classifier's prediction.
1 code implementation • 7 Jul 2020 • Ping-Yeh Chiang, Michael J. Curry, Ahmed Abdelkader, Aounon Kumar, John Dickerson, Tom Goldstein
While adversarial training can improve the empirical robustness of image classifiers, a direct extension to object detection is very expensive.
1 code implementation • ICML 2020 • Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi
Notably, for $p \geq 2$, this dependence on $d$ is no better than that of the $\ell_p$-radius that can be certified using isotropic Gaussian smoothing, essentially putting a matching lower bound on the robustness radius.