no code implementations • 1 Jan 2021 • Pranjal Awasthi, Sreenivas Gollapudi, Kostas Kollias, Apaar Sadhwani
We study the design of efficient online learning algorithms tolerant to adversarially corrupted rewards.
no code implementations • 17 Nov 2020 • Ellery Wulczyn, David F. Steiner, Melissa Moran, Markus Plass, Robert Reihs, Fraser Tan, Isabelle Flament-Auvigne, Trissia Brown, Peter Regitnig, Po-Hsuan Cameron Chen, Narayan Hegde, Apaar Sadhwani, Robert MacDonald, Benny Ayalew, Greg S. Corrado, Lily H. Peng, Daniel Tse, Heimo Müller, Zhaoyang Xu, Yun Liu, Martin C. Stumpe, Kurt Zatloukal, Craig H. Mermel
Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.
no code implementations • 16 Dec 2019 • Ellery Wulczyn, David F. Steiner, Zhaoyang Xu, Apaar Sadhwani, Hongwu Wang, Isabelle Flament, Craig H. Mermel, Po-Hsuan Cameron Chen, Yun Liu, Martin C. Stumpe
Our analysis demonstrates the potential for this approach to provide prognostic information in multiple cancer types, and even within specific pathologic stages.