1 code implementation • 27 Sep 2024 • Richard Osuala, Smriti Joshi, Apostolia Tsirikoglou, Lidia Garrucho, Walter H. L. Pinaya, Daniel M. Lang, Julia A. Schnabel, Oliver Diaz, Karim Lekadir
This paper presents a method for virtual contrast enhancement in breast MRI, offering a promising non-invasive alternative to traditional contrast agent-based DCE-MRI acquisition.
1 code implementation • 19 Jun 2024 • Lidia Garrucho, Claire-Anne Reidel, Kaisar Kushibar, Smriti Joshi, Richard Osuala, Apostolia Tsirikoglou, Maciej Bobowicz, Javier del Riego, Alessandro Catanese, Katarzyna Gwoździewicz, Maria-Laura Cosaka, Pasant M. Abo-Elhoda, Sara W. Tantawy, Shorouq S. Sakrana, Norhan O. Shawky-Abdelfatah, Amr Muhammad Abdo-Salem, Androniki Kozana, Eugen Divjak, Gordana Ivanac, Katerina Nikiforaki, Michail E. Klontzas, Rosa García-Dosdá, Meltem Gulsun-Akpinar, Oğuz Lafcı, Ritse Mann, Carlos Martín-Isla, Fred Prior, Kostas Marias, Martijn P. A. Starmans, Fredrik Strand, Oliver Díaz, Laura Igual, Karim Lekadir
This dataset aims to accelerate the development and benchmarking of deep learning models and foster innovation in breast cancer diagnostics and treatment planning.
1 code implementation • 20 Mar 2024 • Richard Osuala, Daniel M. Lang, Preeti Verma, Smriti Joshi, Apostolia Tsirikoglou, Grzegorz Skorupko, Kaisar Kushibar, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Julia A. Schnabel, Karim Lekadir
Contrast agents in dynamic contrast enhanced magnetic resonance imaging allow to localize tumors and observe their contrast kinetics, which is essential for cancer characterization and respective treatment decision-making.
1 code implementation • 17 Nov 2023 • Richard Osuala, Smriti Joshi, Apostolia Tsirikoglou, Lidia Garrucho, Walter H. L. Pinaya, Oliver Diaz, Karim Lekadir
Despite its benefits for tumour detection and treatment, the administration of contrast agents in dynamic contrast-enhanced MRI (DCE-MRI) is associated with a range of issues, including their invasiveness, bioaccumulation, and a risk of nephrogenic systemic fibrosis.
no code implementations • 17 Sep 2021 • Apostolia Tsirikoglou, Karin Stacke, Gabriel Eilertsen, Jonas Unger
The scarcity of labeled data is a major bottleneck for developing accurate and robust deep learning-based models for histopathology applications.
1 code implementation • 19 Aug 2021 • Gabriel Eilertsen, Saghi Hajisharif, Param Hanji, Apostolia Tsirikoglou, Rafal K. Mantiuk, Jonas Unger
Here, we reproduce a typical evaluation using existing as well as simulated SI-HDR methods to demonstrate how different aspects of the problem affect objective quality metrics.
no code implementations • 23 Apr 2021 • Gabriel Eilertsen, Apostolia Tsirikoglou, Claes Lundström, Jonas Unger
This work investigates the use of synthetic images, created by generative adversarial networks (GANs), as the only source of training data.
no code implementations • 20 May 2020 • Apostolia Tsirikoglou, Karin Stacke, Gabriel Eilertsen, Martin Lindvall, Jonas Unger
One such scenario relates to detecting tumor metastasis in lymph node tissue, where the low ratio of tumor to non-tumor cells makes the diagnostic task hard and time-consuming.
no code implementations • 17 Oct 2017 • Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge, Jonas Unger
We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks.